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Abstract

Synthesizers are powerful tools that allow musicians to create dynamic and original
sounds. Existing commercial interfaces for synthesizers typically require musi-
cians to interact with complex low-level parameters or to manage large libraries
of premade sounds. To address these challenges, we implement SynthScribe —
a fullstack system that uses multimodal deep learning to let users express their
intentions at a much higher level. We implement features which address a number
of difficulties, namely 1) searching through existing sounds, 2) creating completely
new sounds, 3) making meaningful modifications to a given sound. This is achieved
with three main features: a multimodal search engine for a large library of synthe-
sizer sounds; a user centered genetic algorithm by which completely new sounds
can be created and selected given the user’s preferences; a sound editing support
feature which highlights and gives examples for key control parameters with re-
spect to a text or audio based query. The combination of these features creates a
novel workflow for musicians exemplifying the usefulness of systems developed
with a foundation of multimodal deep learning.

1 Introduction

Synthesizers enable musicians to create rich and complex timbres — unique sounds that can be
played on a keyboard or through other digital interfaces that allow composers to expand their timbral
vocabulary beyond a typical set of instruments (e.g. guitars, violin, timpani, etc.). To use a synthesizer,
musicians must learn to manage hundreds of control parameters that modify the various aspects of a
sound. Many musicians typically rely on preset sounds which are designed by a skilled engineer and
packaged with a synthesizer as starting points for musicians. Allegedly, 9 out of 10 Yamaha DX7s
are returned with their default presets still intact, suggesting that presets are heavily relied on and that
many musicians rarely succeed in creating unique sounds of their own( Seago et al. (2004)). This
may partly be due to the high dimensionality of synthesizer sounds and their non-intuitive naming
conventions. Synthesis parameters are often named after quantifiable aspects of sounds which is
disconnected from typical experiential descriptions of sounds( Seago et al. (2004)).

To facilitate their use, synthesizers typically come with a large bank of premade synthesizer sounds
(typically called presets) which are sometimes accompanied by a keyword search engine. A good
example of this is Analog Lab V by Arturia 1 which provides a bank of 5840 preset sounds where each
sound is labeled with various semantic attributes that can be searched by the user. Music technology

1https://www.arturia.com/products/software-instruments/analoglab-v/overview
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companies may also design macrocontrols for their synthesizers — more intuitive controls which
combine multiple control parameters into one control with an intuitive name. Machine learning
and intelligent interface research has attempted to automatically create intuitive macrocontrols
through active learning or by using latent representations of synthesizer sounds to craft macrocontrols
automatically( Esling et al. (2020, 2019); Huang et al. (2014)). Machine learning researchers have
also developed sound matching algorithms that would let users find the synthesis parameters that
best replicate any piece of recorded audio (Horner et al. (1993); Lai et al. (2006); Masuda and Saito
(2021)).

In order to help musicians use synthesizers, these prior approaches require a new model to be trained
or the collection of user annotations of synthesizer sounds. In this work, we combine several features
in a novel system that can help users search for, modify, and create completely new synthesizer
sounds by using text and audio concurrently as an intuitive control modality without training a new
model or requiring user annotations.

2 SynthScribe

To this end, we present SynthScribe — a full stack system built on top of the Diva synthesizer by u-He
that leverages multimodal deep learning to help musicians express their desires for synthesizer sounds
at a much higher level. We implement three features in SynthScribe that leverage the multimodal
deep learning model LAION-CLAP (Wu* et al. (2023)).

Multimodal Search We record and embed a 3529 preset sounds and implement a multimodal search
of synthesizer sounds. Using this feature, musicians can express their desires at a high level using
text and then refine their search by running an audio search on a given synthesizer sound which more
closely resembles their desires.

Genetic Mixing We also create a user-centered genetic algorithm where users can create hundreds of
new synthesizer by mixing together a musicians favourite sounds; these sounds are then recorded and
embedded with LAION-CLAP on the fly, allowing users to rapidly discover completely new sounds
through the multimodal search feature.

Preset Modification Once a user has found a sound that nearly meets their desires, they can modify it
using the preset modification feature which highlights important groups of parameters with respect to
a text or audio query and provides examples of how to modify those parameters to achieve a desired
effect.

3 Analysis and Conclusion

We complete a comparative user study that examines LAION-CLAP’s performance on synthesizer
sounds with BERT as a baseline (Devlin et al. (2019)). The results show that LAION-CLAP
outperforms BERT on this task, providing a solid foundation for our system. We also solicit
feedback from musicians in a 6 participant user study. This study exposes several use cases for
our system; specifically, our participants highlight how SynthScribe can save them time while also
providing them with exciting new sounds that inspire their creativity. We observe that musicians
particularly like sounds which are desirable but unexpected. This suggests that future work that
applies multimodal deep learning to synthesizers should not just focus on creating sounds which
precisely replicate what a user specifies but should also attempt to find desirable but surprising
sounds that go beyond what the user is capable of imagining. To further contextualize this work, we
include detailed explanations of our features and experiments in the supplementary materials and
request to give a demo exemplifying these new tools. We also compile a short video 2 containing a
system walkthrough and performances with sounds created using SynthScribe.

2https://youtu.be/PWPt7ErSKU0?si=udcF5m5rh2SjPCzI
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4 Ethical Considerations

SynthScribe is designed to help musicians but could also be a detriment for working musicians that
specialize in making synthesizer sounds. If the tool were to be widely adopted or if SynthScribe
inspired an impactful piece of future work, it is possible that the developments of these technologies
could make it easier to find interesting synthesizer sounds for less skilled musicians that would have
otherwise relied on the services of these specialists. In future work, it could be important to take a
utilitarian perspective which weighs whether these tools would provide more benefit to specialized
musicians than detriment.

5 Supplementary Material

5.1 Implementation Details of SynthScribe

The whole of SynthScribe is built using a combination of Max — a visual programming language
used by musicians to develop bespoke synthesis algorithms with interface development capabilities
— and Python. Max is used to host the Diva Synthesizer and to handle notes played on digital
instruments which are sent to the Diva Synthesizer to be rendered as an audio signal. Python is used
to implement features which require machine learning capabilities and to provide support when a
programming task is difficult to implement in Max. These Python functions are executed with inputs
from Max by making POST requests to a Flask (Grinberg (2018)) API. All of our ML related features
make use of LAION-CLAP embeddings to make a useful connection between text and audio. These
embeddings represent the modalities of text and audio in a joint space, thus allowing for retrieval of
audio with text while also allowing for direct comparisons to be made between audio samples. We
choose a checkpoint 3 which has been trained first on general audio and then finetuned on music,
allowing users to describe instruments in addition to other non-musical sounds when searching for
presets. Below we describe the functionality of the key components.

5.1.1 The Diva Synthesizer

We purchased the Diva Synthesizer by U-he to create a foundation for our system. We choose this
synthesizer as it is relatively popular and has been used for similar tasks in a relevant prior work by
(Esling et al. (2020, 2019)). In addition to this, it also has a large amount of preset sounds which are
available for free on the internet. In total, we make use of the 1200 factory preset sounds made by
U-he and downloaded 2328 user preset sounds created by independent musicians on the internet.

5.1.2 Preset Retrieval

To enable text and audio based preset retrieval, we make use of LAION-CLAP embeddings. For
the existing presets, we record and embed them ahead of time using a combination of Max and
Python. Each preset is recorded at middle C for 4 seconds with the note being sustained for the first
second of that interval. For a text search, a Flask API endpoint handles a POST request from Max
containing the text query. This text query is then embedded and the embedded presets are ranked
with respect to their cosine similarity to the text embedding. This ranked list is then returned to Max
to be visualized. If the user wants to execute an audio search, the embedding for the preset they have
selected is retrieved and the presets most similar to the given preset (including the given preset itself)
are returned back to the user. The interface for this feature is illustrated in Fig. 1.

5.1.3 Genetic Mixing

Users can make hundreds of new sounds by adding their favourite sounds to a favourites list and then
executing the genetic mixing procedure. The mechanisms for genetic mixing can be described using
the language of Genetic Algorithms (GA). Initially, the user selects a group of fit presets to be bred
together in order to create a new generation of fit presets. To create this new generation of individuals,

3music_audioset_epoch_15_esc_90.14.pt available at https://github.com/LAION-AI/CLAP
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Figure 1: Interface for the window where users can search through the default preset bank (visualized
in this figure) or presets generated with the Genetic Mixing feature. Key functionality for the
Multimodal Search are highlighted in orange and Genetic Mixing features are highlighted in turquoise.

Figure 2: Demonstration of a uniform crossover between two parent synthesizer sounds. The groups
of parameters (Oscillators, Filters, ..., Effects) are swapped in their entirety to create the children.

we breed pairs of preset sounds by having a child randomly inherit whole groups of parameters from
one parent or the another. The breeding mechanism is displayed in Fig. 2. Diva and many other
synthesizers are broken down into panels where each panel contains a group of parameters which
control a specific aspect of the sound. For Diva, we recognize 13 such groups. In a breeding operation
between parent A and parent B, two children are always created. For a specific group of parameters,
the first child will randomly inherit either parent As or parent Bs group with equal probability. The
second child will always receive each group that the first child did not inherit. For each pair of parent
presets, we complete 5 breeding operations resulting in a total of 10 children per pair. This operation
is equivalent to a uniform crossover over the groups of parameters. Upon creating a new generation
of presets, they must be recorded and embedded to maintain search functionalities. This is achieved
by first using the Python library DawDreamer (Braun (2021)) to record each preset sound in faster
than real time and then using LAION-CLAP to embed each of these new recordings. The interface
for this process is illustrated in Fig. 1 in turquoise.
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Figure 3: Interface for the Preset Modification feature. Users can retrieve examples that are relevant
to a desired effect by first using a text query. Examples relating to this text query are placed in
columns of the "Examples" matrix. These examples are labelled numerically and can be refined using
an audio search. The "old" column contains the sound the user wishes to modify. They can change
this sound by clicking on cells in other columns. Each row corresponds to 10 possible changes for a
group of parameters and the importance of these parameters is highlighted using the green LEDs to
the left of the parameter group names.

Figure 4: A visualization to show how the importance of each parameter group is calculated. This
shows how the shade of green is deepest when the distribution for the parameter is greatly changed as
we isolate for the synthesizer sounds returned with respect to some query.

5.1.4 Preset Modification

Users can use a text query to express a modification they would like to make to a given synthesizer
sound. We then use LAION-CLAP to retrieve examples that are related to the desired affect that the
user is trying to impress onto their current sound. We then let users change the parameters of the
original sound by letting them mix and match groups of parameters from the example sounds onto the
parameters of their current sound using the example matrix (the interface for this is depicted in Fig.
3). We highlight the importance of the parameters with respect to their desired change by highlighting
certain groups of parameters with varying shades of green. We call this feature the parameter group
highlighter . It provides the foundation for having the user modify presets because it guides the users
exploration of the example matrix. We implement this by treating each parameter on the synthesizer
as a random variable and observing differences in the distributions of a parameter over the whole
preset bank against an approximate distribution of that parameter for the top 100 presets returned for
the user’s query. If there is a large difference in these distributions, it shows that this parameter is
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in part responsible for the perceptual qualities in the sounds returned for this query. For example,
if the user searches for "the sound of an arpeggio" it can be expected that the parameters in the top
100 presets for the Arpeggiator will more often be turned on and modified in a unique configuration
than those returned outside of the top 100. To quantify this difference, we first approximate the
distributions of each parameter on the synthesizer using all 3528 presets. Discrete parameters are
left as is while continuous parameters (always valued between 0 and 1) are approximated with 10
equidistant bins. Empty bins are handled with additive smoothing. Most continuous variables have a
default value which are large spikes in probability density at the extremes or precisely in the middle
of a parameters range. To better represent this reality, we give default values their own narrow bin. At
inference time, we take in a text or audio query from the user and find the top 100 presets using cosine
similarity of LAION-CLAP embeddings. We then recalculate the distributions for each parameter
over these 100 samples using the same bins and additive smoothing as before. These distributions
are then compared using Jensen-Shannon Distance (Lin (1991)) — a stable and symmetric distance
measure between distributions which is ranged between 0 and 1. We proceed to calculate the average
distance for the top 20 parameters with the largest distance in each group. We select the top 20 so that
the importance of large parameter groups are not diluted by the fact that many of their parameters
will be left at default settings. Upon calculating this average for each group, we assign the parameter
group with the largest average distance the deepest shade of green and interpolate the colors for other
groups on a range between 0 and the maximum. We choose this colour interpolation strategy to
ensure that maximum is always obvious.

5.2 User Evaluation of LAION-CLAP

We evaluate LAION-CLAP’s ability to retrieve synthesizer sounds and use BERT (Devlin et al.
(2019)) as a strong baseline. We do so by running a user study where we have users rate the sounds
returned using LAION-CLAP and BERT with respect to a text query.

5.2.1 Participants

We recruited 8 participants in total for the study (Mean age=25.0, STD=2.9). Participants were not
required to have any level of musical experience. Only two participants actively played an instrument
and none had extensive experience using synthesizers. The study took place across two independent
tasks which happened on different days where each task lasted approximately 30 minutes. Participants
were compensated with a total of 20 CAD.

5.2.2 Methodology

Participants are tasked with rating the relevance of a set of synthesizer sounds with respect to a text
query on a 7-point Likert scale. In total, each participant is given two text queries and evaluates a total
of 10 sounds for each text query. The text queries are generated before each study in a quasi-random
fashion using an adjective and an instrument class to describe a sound. An example query could be
"The sound of a harsh brass instrument". The list of possible adjectives is compiled from relevant
research in music psychology and keywords used in keyword searches for synthesizers. The list of
possible instrument classes is sourced only from keywords used in keyword searches for synthesizers
(Both lists are available in Table 1). To make these queries understandable to our participant class,
we avoid instrument classes and adjectives which would be non-intuitive to people without musical
experience. For each query, we retrieve 5 sounds using LAION-CLAP and 5 sounds using BERT from
the Diva Synthesizer preset bank. LAION-CLAP retrieval is achieved using the strategy described in
subsection??. BERT retrieval is achieved by extracting adjectives and instrument classes for each
sound in the Diva Synthesizer preset bank using GUI automation and OCR. Given these adjectives
and instrument classes, we embed sentences of the form "The sound of a adjective instrument class"
using BERT. When querying both models, we use the form "The sound of..." to better fit with the
training data for LAION-CLAP; however, since we use it to create out BERT embeddings as well
this gives LAION-CLAP no undue advantage for the task. The five sounds are then compiled into
a list of 10 in a random ordering. The participant is then allowed to play each sound on a musical
keyboard and provides their evaluation.
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Table 1: Adjectives and Instruments

Instrument Class Wind Instrument, Electric Piano, Bass, Drum, Brass Instrument, String Instru-
ment, Organ

Adjectives Percussive, Constant, Moving, Clean, Dirty, Soft, Aggressive, Thin, Complex,
Funky, Sharp, Simple, Punchy, Huge, Bizarre, Mellow, Atmospheric, Airy,
Evolving, Short, Long, Noisy, Glitchy, Arpeggiated, Distorted, Acoustic, Dull,
Loud, Low, Rough, Smooth, Clear, Rich, Nasal, Full, Hard, Weak, Muffled,
Resonant, Large, Quiet, Calm, Harsh, Shrill, Powerful, Metallic, Ringing, Deep

5.3 Results

As shown in Table 2, LAION-CLAP outperforms BERT with a higher average and median rating.
Further analysis with a Wilcoxon Signed-Rank test shows that this result is statistically significant (p
< .05).

Table 2: LAION-CLAP and BERT Ratings

Model Performance
Mean Median IQR

LAION-CLAP 4.45 4.5 3.0
BERT 3.88 4.0 2.0

5.4 Free Usage Observation with Musicians

5.4.1 Participants

Our study consisted of 6 musicians who had experience creating music. Two were professionals (P2,
P5) and the rest were hobbyists. Both of the professional musicians had received formal instruction on
synthesizers in an academic setting with P2 describing themselves as an expert and P5 an intermediate.
The hobbyists had at most encountered synthesizers when making music and described themselves as
either novices or beginners. All musicians had at least basic keyboard skills. Each were compensated
with 20 CAD.

5.4.2 Methodology

The study consisted of a 15-minute demo of SynthScribe followed by the participant completing at
least two independent musical tasks. The participant was provided with a 61-key keyboard that they
used to play the synthesizer sounds. P2 brought in and was permitted to use their Akai EWI 5000 4 —
a digital wind instrument. The participant was free to select any task that they might encounter while
using a synthesizer for their own purposes. Suggested tasks included finding a desirable synthesizer
sound for a song they knew how to play, replicating a synthesizer sound from a song, or finding a
synthesizer sound that might fit in a score for a film of a particular genre. When using the system,
we requested that the participant write text queries in the form of "The sound of a ..." to ensure the
best results due to the nature of the training data for LAION-CLAP. The study concluded with a
15-minute semi-structured interview.

5.4.3 Summary of Semi-Structured Interviews

The overall results of these studies were positive. P2, a professional musician, mentions that "even
though like I know a lot about synthesis and can probably get pretty far with just the DIVA interface,
this actually saved me a lot of time." The other professional musician, P5, mentions that the system
would be most useful for them when learning to use a new synthesizer. Participants (P1, P2, P3) also
mention that they enjoy the discoverability aspects of the system, describing situations where they
arrived at fitting but surprising new sounds. We also received invaluable constructive feedback that
can inspire future directions. Below, we further analyze the feedback we received on each feature.

4https://www.akaipro.com/ewi5000
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5.4.4 Multimodal Search

We observe that some participants use the multimodal search in a step-wise fashion (P1, P3, P6).
First, they run a text search with a general description of their idea and then they run an audio search
on a sound they like which potentially returns other sounds related to that one. P1, for example,
started by searching for the sound of a piccolo and then narrowed their search by running an audio
search on a sound they liked which led to a recorder sound which they felt to be most useful. P3
describes the advantage of a general initial text search when they were looking for ambient sounds:
"My goal was very loose and it gave me some things that, for example the bass being a candidate for
the kind of ambient sound I want, I wouldn’t have thought of that myself." Participants sometimes
had difficulties with the query format. P4, for example, thought typing "the sound of ..." everytime
was "completely irrelevant." They also suggested that it might be better to have a pop-up window
containing the results of an audio search to avoid losing the original content of the initial text search.

5.4.5 Genetic Mixing

The Genetic Mixing feature was appreciated by participants for the pleasant but unexpected sounds
it created (P1, P2, P3, P4). P4 elaborates this saying "I think the mix feature allows you to kind of
have these weird overlaps that you wouldn’t normally have in a synth and that was really cool." The
fact that our mixing algorithm achieves aesthetically pleasing and surprising results is bolstered by
the reviews of the Multimodal Search due to the fact that users can search through new generations
of sounds using the same search strategies as before. Some participants expected the mixes to be
slightly more thorough, however. P2, for example, noted that they expected the Genetic Mixing to
do some level of interpolation between the continuous parameters in the favorites list instead of just
swapping parameters. P3 mentions that a useful addition would be a system that automatically names
the new synthesizer sounds as opposed to the current generic naming convention.

5.4.6 Preset Modification

The preset modification feature was used by participants for making quick directed changes. Both
professional musicians, P2 and P5, use this feature to make the final adjustments when attempting
to replicate synthesizer sounds from songs they’d chosen. To this end, P2 claims that "even though
like I know a lot about synthesis and can probably get pretty far with just the DIVA interface, this
actually saved me a lot of time. P1 notes that when using synthesizers in the past "the search space
seemed unlimited" but that this feature provides "a really fast way to just iterate through all of the
different possibilities out there". They also claimed that the parameter group highlighter was a useful
indicator of importance. Other participants highlight some non-intuitive aspects of this feature. P4
and P6 believed the numerical labelling of the examples corresponded to an increasing quantity. P3
felt that having to use nouns in the text queries (e.g. "the sound of a harsh synthesizer") required
more mental effort than just typing an adjective or command (e.g. "more harsh"). P4 outright stated
that they disliked the feature because it felt like it required them to understand what the functionality
of the different parameter groups.
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