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Introduction. This paper presents DiffuseBot , a first step toward efficient automatic robotic and
virtual creature content creation. We propose using physical simulation to guide the generative
process of pretrained large-scale 3D diffusion models. Diffusion models pretrained for 3D shapes
provide an expressive base distribution that can effectively propose reasonable candidate geometries
for soft robots. In order to sample robots in a physics-aware and performance-driven manner, we
first optimize the embeddings that condition the diffusion model, skewing the sampling distribution
toward better-performing robots as evaluated by our simulator. Then, we reformulate the sampling
process that incorporates co-optimization over structure and control.
Method. Soft robot co-design refers to a joint optimization of the morphology (geometry, body stiff-
ness, and actuator placement) and control of soft robots. Co-design poses challenges in optimization
including interplay between body and control variables, see [16] for details.

Figure 1: The DiffuseBot framework consists of three modules: (i) robotizing, which converts diffusion samples
into physically simulatable soft robot designs (ii) embedding optimization, which iteratively generate new robots
to be evaluated for training the conditional embedding (iii) diffusion as co-design, which guides the sampling
process with co-design gradients from differentiable simulation.
We adopt Point-E [12] as a pre-trained 3D diffusion model. However, the samples from the diffusion
model xt are in the form of surface point cloud and are not readily usable as robots to be evaluated in
the physics-based simulation, and so the diffusion process must be “robotized” in order to compute
the gradient of the objective function.

We use a Material Point Method (MPM)-based simulation [16], which takes solid geometries as
inputs. After a mesh reconstruction, the solid geometry Ψgeo represented by a solid interior point
cloud is then sampled evenly within the mesh, with sufficient density to support the MPM-based
simulation. Finally, to integrate the solidification process into diffusion samplers, we still need its
gradient. We adopt Gaussian kernels on point-wise Euclidean distances as gradients between two
point clouds: ∂u

∂v = exp(−α∥u−v∥2)∑
v′∈x̂0

exp(−α∥u−v′∥2) ,u ∈ Ψgeo,v ∈ x̂0.

A solid geometry does not make a robot; in order for the robot to behave, its dynamics must be
defined. After sampling a solid geometry, we thus need to define material properties and actuator
placement. Specifically, we embed actuators in the robot body in the form of muscle fibers that can
contract or expand to create deformation; further, we define a stiffness parameterization in order
to determine the relationship between deformation and restorative elastic force. We adopt constant
stiffness for simplicity since it has been shown to trade off with actuation strength [16]; thus we have
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Table 1: Improved physical utility by augmenting physical simulation with diffusion models.

Embed.
Optim.

Diffusion as
Co-design

Passive Dynamics Locomotion Manipulation
Balancing Landing Crawling Hurdling Gripping Moving a Box

0.081.164 0.832.217 0.011.012 0.014.020 0.014.008 0.019.020

✓ 0.556.127 0.955.032 0.048.007 0.019.014 0.025.006 0.040.018

✓ ✓ 0.653.107 0.964.029 0.081.018 0.035.030 0.027.004 0.044.021

Ψst(x̂0) = const and ∂Ψst
∂x̂0

= 0. Then, we propose to construct actuators based on the robot solid
geometry Ψact(Ψgeo(x̂0)) via clustering; namely, we perform k-means with pre-defined number of
clusters on the coordinates of 3D points from the solid geometry Ψgeo. The gradient then becomes
∂Ψact
∂Ψgeo

∂Ψgeo

∂x̂0

∂x̂0

∂xt
, where ∂Ψact

∂Ψgeo
≈ 0 as empirically we found the clustering is quite stable in terms of

label assignment, i.e., with ∆Ψgeo being small, ∆Ψact → 0.

Algorithm 1 Sampling: Diffusion As Co-design

Initialize: initial sample xT ∼ N (0, I)
while within maximal number of diffusion steps
t ≥ 0 do

Perform regular per-step diffusion update:
xt ⇐ xt+1.

if perform co-design then
while within K steps do

Run update in (1) and (2) to over-
write xt.

end while
end if

end while

To best leverage the diversity of the generation
from a large-scale pre-trained diffusion models,
we propose to (1) actively generate new data
from model and maintain them in a buffer, (2)
use physics-based simulation as a certificate of
performance, (3) optimize the embeddings con-
ditioned by the diffusion model under a skewed
data distribution to improve robotic performance
in simulation. Curating a training dataset on its
own alleviates the burden of manual effort to
propose performant robot designs. Optimizing
the conditional embeddings instead of finetuning
the diffusion model eliminates the risk of deteri-
orating the overall generation and saves the cost
of storing model weights for each new task (es-
pecially with large models). We follow, minc Et∼[1,T ],pθ(x0|c),N (ϵ;0,I)[||ϵ− ϵθ(xt(x0, ϵ, t), t, c)||2]
We further improve the performance of individual samples by reformulating the diffusion sampling
process into a co-design optimization. There is a synergy between diffusion models and energy-based
models [15, 4, 3], which allows a more gradient-descent-like update with Markov Chain Monte Carlo
sampling [3]. Incorporating gradient-based co-optimization [16], we have

Design Optim.: x(k)
t = x

(k−1)
t +

σ2

2

(
ϵθ(x

(k−1)
t , t)− κ∇

x
(k−1)
t
L(Ψ(x

(k−1)
t ), ϕk−1

t )
)
+ σ2ϵ (1)

Control Optim.: ϕ(k)
t = ϕ

(k−1)
t + γ∇

ϕ
(k−1)
t
L(Ψ(x

(k−1)
t ), ϕk−1

t ) (2)

where ϵ ∼ N (0, I), x(0)
t = x

(K)
t−1, κ is the ratio between two types of design gradients, K is the

number of MCMC sampling steps at the current diffusion time, γ is the weight for trading off design
and control optimization, and ϕ

(0)
t can be either inherited from the previous diffusion time ϕ

(K)
t−1 or

reset to the initialization ϕ
(0)
T . We highlight the high resemblance to gradient-based co-optimization

with xt as the design variable and ϕt as the control variable. This procedure is performed once every
M diffusion steps (Algorithm 1), where M is a hyperparameter that trade-offs "guidance" strength
from physical utility and sampling efficiency. Intuitively, the entire diffusion-as-co-design process is
guided by three types of gradients: (i) ϵθ(x

(k−1)
t , ·) provides a direction for the design toward feasible

3D shapes based on the knowledge of pre-training with large-scale datasets (and toward enhanced
physical utility with the optimized embeddings via classifier-free guidance using ϵ̂θ(x

(k−1)
t , ·, c)),

(ii)∇xt
L(Ψ(xt), ·) provides a direction for the design toward improving co-design objective L via

differentiable simulation, and (iii)∇ϕt
L(·, ϕt) provides a direction for the controller toward a better

adaption to the current design xt that allows more accurate evaluation of the robot performance.
Experiments. We cover three types of robotics tasks: passive dynamics, locomotion, and manipula-
tion (Figure 1). In Table 1, we examine the effectiveness of embedding optimization and diffusion as
co-design for improving physical utility. For each entry, we draw 100 samples with preset random
seeds to provide valid sample-level comparison (i.e., setting the step size of co-design optimization to
zero in the third row will produce almost identical samples as the second row). We report the average
performance with standard deviation in the superscript. We observe increasing performance across
all tasks while incorporating the two proposed techniques, demonstrating the efficacy of DiffuseBot.

2



1 Ethical Considerations

Automating engineering and creative design workflows has the ability to empower more people to be
creators and democratize design and engineering; however, with every potentially large change, even
positive, comes complementary risks. (Semi-)automating aspects of the design of virtual characters or
real-world cyberphysical machines has the potential to expand the amount of design and engineering
work that can be done, but if the demand for that type of work is capped, it could lead to more
competitive labor markets or outright career disenfranchisement. Further, our method currently relies
on on Point-E as a base model for diffusion of robot forms. Although Point-E is ethically sourced
from free-and-open-source datasets, other models may be directly substituted in its place. Those
may not be derived from free datasets, and commercial application would exploit individuals’ unpaid
labor. Further, some models could capture 3D data that may be personal assets (e.g. body scans); in
that case our method would generate variations of personal information, thus violating user privacy.
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Algorithm 2 Training: Embedding Optimization

Initialize: D ← ∅, c← ∅
while within maximal number of epochs do

Generate data with the diffusion model: x0 ∼ pθ(x0|c).
Evaluate samples with physics-based simulation: l(x0) = L(Ψ(x0), ϕ).
Aggregate and update datasets: D ← Filter(D ∪ {x0, l}).
Optimize the embedding c on D using the objective (5).

end while

A Background On Point-E

Point-E [12] is a diffusion-based generative model that produces 3D point clouds from text or
images. The Point-E pipeline consists of three stages: first, it generates a single synthetic view
using a text-to-image diffusion model; second, it produces a coarse, low-resolution 3D point cloud
(1024 points) using a second diffusion model which is conditioned on the generated image; third,
it upsamples/“densifies” the coarse point cloud to a high-resolution one (4096 points) with a third
diffusion model. The two diffusion models operating on point clouds use a permutation invariant
transformer architecture with different model sizes. The entire model is trained on Point-E’s curated
dataset of several million 3D models and associated metadata which captures a generic distribution
of common 3D shapes, providing a suitable and sufficiently diverse prior for robot geometry. The
diffused data is a set of points, each point possessing 6 feature dimensions: 3 for spatial coordinates
and 3 for colors. We ignore the color channels in this work. The conditioning for the synthesized
image in the first stage relies on embeddings computed from a pre-trained ViT-L/14 CLIP model;
in the embedding optimization of DiffuseBot, the variables to be optimized is exactly the same
embedding. Diffusion as co-design is only performed in the second stage (coarse point cloud
generation) since the third stage is merely an upsampling which produces only minor modifications
to robot designs. We refer the reader to the original paper [12] for more details.

B Theoretical Motivation

B.1 3D Shape Generation with Diffusion-based Models

Diffusion-based generative models [6, 14] aim to model a data distribution by augment-
ing it with auxiliary variables {xt}Tt=1 defining a Gaussian diffusion process p(x0) =∫
p(xT )

∏T
t=1 p(xt−1|xt)dx1:T with the transition kernel in the forward process q(xt|xt−1) =

N (xt;
√
1− βtxt−1, βtI) for some 0 < βt < 1. For sufficiently large T , we have p(xT ) ≈ N (0, I).

This formulation enables an analytical marginal at any diffusion time xt =
√
ᾱtx0+

√
1− ᾱtϵ based

on clean data x0, where ϵ ∼ N (0, I) and ᾱt =
∏t

i=1 1 − βi. The goal of the diffusion model (or
more precisely the denoiser ϵθ) is to learn the reverse diffusion process p(xt−1|xt) with the loss,

min
θ

Et∼[1,T ],p(x0),N (ϵ;0,I)[||ϵ− ϵθ(xt(x0, ϵ, t), t)||2] (3)

Intuitively, ϵθ learns a one-step denoising process that can be used iteratively during sampling to
convert random noise p(xT ) gradually into realistic data p(x0).

To achieve controllable generation with conditioning c, the denoising process can be slightly altered
via classifier-free guidance [7, 2],

ϵ̂θ,classifier-free := ϵθ(xt, t,∅) + s · (ϵθ(xt, t, c)− ϵθ(xt, t,∅)) (4)

where s is the guidance scale, ∅ is a null vector that represents non-conditioning. Embedding
Optimization.

To best leverage the diversity of the generation from a large-scale pre-trained diffusion models,
we propose to (1) actively generate new data from model and maintain them in a buffer, (2) use
physics-based simulation as a certificate of performance, (3) optimize the embeddings conditioned by
the diffusion model under a skewed data distribution to improve robotic performance in simulation.
Curating a training dataset on its own alleviates the burden of manual effort to propose performant
robot designs. Optimizing the conditional embeddings instead of finetuning the diffusion model
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eliminates the risk of deteriorating the overall generation and saves the cost of storing model weights
for each new task (especially with large models). We follow,

min
c

Et∼[1,T ],pθ(x0|c),N (ϵ;0,I)[||ϵ− ϵθ(xt(x0, ϵ, t), t, c)||2] (5)

Note the three major distinctions from (3): (i) the optimization variable is the embedding c not θ
(ii) the denoiser is conditioned on the embeddings ϵθ(. . . , c) and (iii) the data distribution is based
on the diffusion model pθ not the inaccessible real data distribution p and is conditioned on the
embeddings c. This adopts an online learning scheme as the sampling distribution is dependent on
the changing c. The procedure is briefly summarized in Algorithm 2, where Filter is an operation
to drop the oldest data when exceeding the buffer limit. In addition, during this stage, we use fixed
prescribed controllers since we found empirically that a randomly initialized controller may not be
sufficiently informative to drive the convergence toward reasonably good solutions; also, enabling
the controller to be trainable makes the optimization prohibitively slow and extremely unstable,
potentially due to the difficulty of the controller required to be universal to a diverse set of robot
designs. After the embedding optimization, we can perform conditional generation that synthesizes
samples corresponding to robot designs with improved physical utility via classifier-free guidance
as in (4). Online learning in embedding optimization. In Section B.1, we discuss how to online
collect a dataset to optimize the embedding toward improved physical utility. Given a simplified
version of (5)

min
c

Epθ(x0|c)[g(x0, c)] (6)

where, for notation simplicity, we drop t ∼ [1, T ], N (ϵ;0, I) in the sampling distribution, and
summarize [||ϵ− ϵθ(xt(x0, ϵ, t), t, c)||2] as g(x, c). We can rewrite the expectation term as,∫

pθ(x0)
pθ(c|x0)

pθ(c)
g(x0, c)dx (7)

which allows to sample from pθ(x0) (i.e., generating samples from the diffusion model) and reweight
the loss with pθ(c|x0)

pθ(c)
; the latter scaling term is essentially proportional to a normalized task perfor-

mance. Empirically, we can maintain a buffer for the online dataset and train the embedding with the
sampling distribution biased toward higher task performance; we use a list to store samples with top-k
performance in our implementation (we also tried reshaping the sampling distribution like prioritized
experience replay in reinforcement learning but we found less stability and more hyperparameters
required in training compared to our simpler top-k approach).

Connection to MCMC. In diffusion sampling, the simplest way to perform reverse denoising process
as in main text follows [6],

pθ(xt−1|xt) = N
(

1
√
αt

(xt −
βt√
1− ᾱt

ϵθ(xt, t)),
1− ᾱt−1

1− ᾱt
βtI

)
(8)

Here, the denoising term can either be unconditional ϵθ(xt, t) or conditional via classifier-free
guidance ϵ̂θ,classifier-free(xt, t, c) as in (4). We use the latter to incorporate the optimized embedding.
To further leverage physics-based simulation, we aim to introduce physical utility during diffusion
sampling process. One possibility is to utilize classifier-based guidance [2],

ϵ̂θ,classifier-based := ϵθ(xt, t)− s ·
√
1− ᾱt∇xt

log p(c|xt) (9)

where p(c|xt) can be conceptually viewed as improving physical utility and ∇xt
log p(c|xt) can be

obtained using differentiable physics and the unconditional score. Note that we slightly abuse the
notation here by overloading c with conditioning from differentiable simulation during sampling
other than the classifier-free guidance using the optimized embedding. However, combining (8) and
(9) much less resembles any gradient-based optimization techniques, which are shown to be effective
in soft robot co-design with differentiable simulation [8, 1]. Fortunately, drawing a connection to
energy-based models [15, 4, 3], yet another alternative to incorporate conditioning in diffusion
models is Markov Chain Monte Carlo (MCMC) sampling [3], where we use Unadjusted Langevin
Dynamics,

xt = x
(K)
t , where x

(k)
t ∼ N

(
x
(k)
t ;x

(k−1)
t +

σ2

2
∇x log p(c|x(k−1)

t ), σ2I

)
(10)
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Table 2: Configuration of embedding optimization.

Balancing Landing Crawling Hurdling Gripping Moving a Box

Buffer Size 600 600 60 600 60 60
Min. Buffer Size 60 60 60 60 60 60

Num. Samples / Epoch 60 60 60 60 60 60
Train Iter. / Epoch 1 1 1 1 1 1

Buffer Top-K 12 12 6 6 6 6
Batch Size 6 6 6 6 6 6

Table 3: Configuration of diffusion as co-design.

Balancing Landing Crawling Hurdling Gripping Moving a Box

tmax 400 150 400 400 400 400
tmin 0 0 0 0 0 0
∆t 50 25 60 60 60 60
K 3 3 5 5 5 5
σ 10−4 · β 10−4 · β 10−4 · β 10−4 · β 10−4 · β 10−4 · β
κ 104 104 104 104 104 104

γ - - 0.01 0.001 0.001 0.001
Renorm Scale 10 10 10 10 10 10

where K is the number of samples in the current MCMC with k as indexing, σ2 is a pre-defined
variance, and x

(0)
t = xt−1. In the context of diffusion models, this procedure is commonly performed

within a single diffusion step to drive the sample toward higher-density regime under the intermediate
distribution p(xt) =

∫
q(xt|x0)p(x0)dx0 at diffusion time t. Inspired by its resemblance to gradient

ascent with stochasticity from the added Gaussian noise of variance σ2, we establish a connection
to design optimization, reformulating diffusion process as co-design optimization as in (1) and (2).
Specifically, we can apply Bayes rule to decompose the score of p(c|x(k−1)

t ),

∇x log p(c|xt) = ∇x log p(xt|c)−∇x log p(xt) (11)

where ∇x log p(xt) is simply the denoiser output ϵθ(xt, t) and ∇x log p(xt|c) is the gradient of
task performance with respect to the intermediate sample of the diffusion model from differentiable
physical simulation and robotizing process. Overall, this leads to (1).

C Implementation Details In Algorithm

In this section, we provide more implementation details and experimental configurations of Diffuse-
Bot and other baselines. In Table 2, we list the configurations of the embedding optimization. With
respect to Algorithm 2, “buffer” refers to the online dataset D.

• Buffer Size is the capacity of the dataset.
• Min. Buffer Size is the minimum of data filled in the buffer before training starts.
• Num. Samples / Epoch is number of new samples collected in each epoch, where epoch here refers

to a new round of data collection in online learning.
• Train Iter. / Epoch is number of training iterations per epoch.
• Buffer Top-K is the number of datapoints with top-k performance being retained in the Filter step

atop the most up-to-date data.
• Batch Size is the batch size in the embedding optimization.

In Table 3, we list the configurations of diffusion as co-design. We follow (1)(2) for:

• K is number of MCMC sampling steps at the current diffusion time.
• σ is the standard deviation related to the MCMC step size.
• κ is the ratio between two types of design gradients.
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Direct SDF DiffuseBot

Figure 2: Comparison between Direct SDF and DiffuseBot on conversion to solid geometry for robotizing.

• γ is the weight for trading off design and control optimization.

• tmax and tmin are the maximal and minimal diffusion time to perform diffusion as co-design,
respectively.

• ∆t is the diffusion time interval to perform diffusion as co-design.

For baselines, we use learning rates for control optimization following γ in Table 3; for particle-based
and voxel-based approaches, we use learning rate 0.01 for design optimization; for implicit function
and diff-CPPN, we use learning rate 0.001 for design optimization. For the inputs of implicit function
and diff-CPPN, we use x, y, z coordinates in the local workspace, the distance to the workspace center
on the xy, xz, yz planes, and the radius from the center. For the network architecture of implicit
function, we use a 2-layer multilayer perceptron with hidden size 32 and Tanh activation. For the
network architecture of diff-CPPN, we use Sin, Sigmoid, Tanh, Gaussian, SELU, Softplus, Clamped
activations with 5 hidden layers and 28 graph nodes in each layer.

D Details In Task Setup

In this section, we provide more details of all tasks setup including environment configuration and
prescribed actuator and controller if any (as mentioned in Section B.1; it is fixed during embedding
optimization and will be co-optimize during diffusion as co-design). We build our environments
on top of SoftZoo [16] and employ the Material Point Method for simulation. Each environment is
composed of boundary conditions that include impenetrable ground, and, in the case of fixed objects
or body parts, glued particles. All tasks use units without direct real-world physical correspondence
and last for 100 steps with each step consisting of 17 simulation substeps. In the following, when
describing the size of a 3D shape without explicitly mentioning the axis, we follow the order: length
(x, in the direction when we talk about left and right), height (y, parallel with the gravity direction),
and width (z). All tasks are demonstrated in Figure 1 in the main paper.

Balancing. The robot is initialized atop a stick-like platform of shape 0.02-unit × 0.05-unit ×
0.02-unit. The robot is givenan initial upward velocity of a 0.5-unit/second and allowed to free fall
under gravity. The goal is for the robot to passively balance itself after dropping again on the platform;
the performance is measured as the intersection over union (IoU) between the space occupied by the
robot during the first simulation step and the space occupied by the robot during the last simulation
step. The robot geometry is confined to a 0.08-unit × 0.08-unit × 0.08-unit workspace. There is no
prescribed actuator placement or controller (passive dynamics).

Landing. The robot is initialized to be 0.08-unit to the right and 0.045-unit above the landing
target with size of 0.02-unit × 0.05-unit × 0.02-unit. The robot is given an initial velocity of 0.5-
unit/second to the right. The goal of the robot is to land at the target; the performance is measured
as the exponential to the power of the negative distance between the target and the robot in the last
frame e−||pobject

H −probot
H ||, where p·H is the position of the robot or object at the last frame with horizon

H . The robot geometry is confined to a 0.08-unit × 0.08-unit × 0.08-unit workspace. There is no
prescribed actuator placement or controller (passive dynamics).

Crawling. The robot is initialized at rest on the ground. The goal of the robot is to actuate its body to
move as far away as possible from the starting position; the performance is measured as the distance
traveled ||px,robot

H − px,robot
0 ||, where px,robot

· is the position of the robot in the x axis at a certain frame
with horizon H . The robot geometry is confined to a 0.08-unit × 0.08-unit × 0.08-unit workspace.
The actuator placement is computed by clustering the local coordinates of the robot centered at its
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average position in the xz (non-vertical) plane into 4 groups. Each group contains an actuator with
its direction parallel to gravity. The prescribed controller is a composition of four sine waves with
frequency as 30hz, amplitude as 0.3, and phases as 0.5π, 1.5π, 0, and π for the four actuators.

Hurdling. An obstacle of shape 0.01-unit × 0.03-unit × 0.12-unit is placed in 0.07-unit front of
the robot. The goal of the robot is to jump as far as possible, with high distances achieved only
by bounding over the obstacle. The performance is measured as the distance traveled. The robot
geometry is confined to a 0.08-unit × 0.08-unit × 0.08-unit workspace. The actuator placement is
computed by clustering the local coordinates of the robot centered at its average position in the length
direction into 2 groups. Each group contains an actuator aligned parallel to gravity. The prescribed
controller takes the form of open-loop, per-step actuation sequences, set to linearly-increasing values
from (0.0, 0.0) to (1.0, 0.3) between the first and the thirtieth frames and zeros afterward for the two
actuators (the first value of the aforementioned actuation corresponds to the actuator closer to the
obstacle) respectively.

Gripping. An object of shape 0.03-unit × 0.03-unit × 0.03-unit is placed 0.08-unit underneath
the robot. The goal of the robot is to vertically lift the object; the performance is measured as the
vertical distance of the object being lifted ||py,object

H − py,object
0 ||, where py,object

· is the position of the
object in the y axis at a certain frame with horizon H . Within a 0.06-unit × 0.08-unit × 0.12-unit
workspace, we decompose the robot into a base and two attached submodules, and we set the output
of DiffuseBot or other robot design algorithms as one of the submodules and make constrain the
other submodule to be a mirror copy; conceptually we design “the finger of a parallel gripper.” The
base is clamped/glued to the upper boundary in z and given a large polyhedral volume to serve
as the attachment point of the gripper finger submodules. The actuator placement is computed by
clustering the local coordinates of the robot centered at its average position in the length direction
into 2 groups; each submodule has one pair of actuators. Each actuator is aligned parallel to gravity.
Overall, one pair of actuators comprises the "inner" part of the gripper and the other comprises the
"outer" part. Suppose the actuation of the two pairs of actuators is denoted in the format of (actuation
of the outer part, actuation of the inner part), the prescribed controller is per-frame actuation, set to (i)
linearly-increasing values from (0.0, 0.0) to (0.0, 1.0) between the first and the fiftieth frames, and (ii)
then linearly-decreasing values from (1.0, 0.0) to (0.0, 0.0) between the fiftieth and the last frames.

Moving a box. A 0.03-unit × 0.03-unit × 0.03-unit cube is placed on the right end of the robot (half
a body length of the robot to the right from the robot center). The goal of the robot is to move the
box to the left; the performance is measured as the distance that the box is moved to the right with
respect to its initial position ||px,object

H − px,object
0 ||, where px,object

· is the position of the object in the x
axis at a certain frame with horizon H . The robot geometry is confined to a 0.16-unit × 0.06-unit ×
0.06-unit workspace. The actuator placement is computed by clustering the local coordinates of the
robot centered at its average position in the height direction into 2 groups. Each group contains an
actuator aligned parallel to the ground. The prescribed controller is per-frame actuation, initialized to
linearly-increasing values from (0.0, 0.0) to (1.0, 0.0) between the first and last frame for the lower
and the upper actuator respectively.

E Analysis On Robotizing

As mentioned in main text, Material Point Method simulation requires solid geometry for simulation;
thus, we need to convert the surface point cloud from Point-E [12] to a volume. The most direct
means of converting the point cloud to a solid geometry is to compute the signed distance function
(SDF), and populate the interior of the SDF using rejection sampling. We refer to this baseline as
Direct SDF. Here, we use a pretrained transformer-based model provided by Point-E as the SDF. In
Figure 2, we compare Direct SDF with our approach described in main text Solid Geometry. We
perform robotizing on intermediate samples at t=300. We observe that Direct SDF fails to produce
well-structured solid geometry since it is trained with watertight on geometry, and thus the conversion
cannot gracefully handle generated point clouds that do not exhibit such watergith structure. This is
specifically common in the intermediate diffusion sample xt as xt is essentially a Gaussian-noise-
corrupted version of the clean surface point cloud. In contrast, the robotizing of DiffuseBot produces
a much well-structured solid geometry since it explicitly handles the noisy interior 3D points by
introducing a tailored loss as in Shape As Points optimization [13] (see main text). In addition, a
better-structured robot geometry is critical to obtain not only a more accurate evaluation of a robot
design at the forward pass of the simulation but also the gradients from differentiable physics at
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Figure 3: Examples of robots bred by DiffuseBot to achieve the all presented tasks.

the backward pass. In Figure 2, we further perform co-optimization on the two robots obtained by
Direct SDF and DiffuseBot; we observe a more stably increasing trend of task performance in our
approach, demonstrating that the gradient is usually more informative with a better-structured robot.
Empirically, while Direct SDF sometimes still provides improving trend with unstructured robots in
co-design optimization, the performance gain is not as stable as DiffuseBot.

F Additional Visualizations Of Experiments

In this section, we show more visualization for a diverse set of the experimental analysis. Please visit
our project page (https://sites.google.com/view/diffusebot) for animated videos.

Generated robots performing various tasks. In Figure 3, we display a montage of a generated
robot’s motion for each task.

10
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Figure 4: Examples of DiffuseBot evolving robots to solve all presented tasks.

Physics-guided robot generation In Figure 4, we show how DiffuseBot evolves robots throughout
the embedding optimization process. Note that DiffuseBot is a generative algorithm and thus results
presented are for demonstration purposes and reflect only a single fixed random seed.

Diffusion process of robot generation. In Figure 5, we show how robots evolve throughout the
diffusion process at different diffusion time via xt with t from T to 0; not to be confused by
Figure 4 where all generations are obtained via a full diffusion sampling x0 and different conditioning
embeddings c. This figure demonstrates the robotized samples across diffusion times, gradually
converging to the final functioning robots as t approaches 0.

Comparison with baselines. In Figure 6, we present robots generated from different baselines. Note
that Point-E is essentially DiffuseBot without embedding optimization and diffusion as co-design.

Incorporating human feedback. In Figure 8, we showcase more examples of incorporating human
textual feedback to the generation process of DiffuseBot. We leverage the compositionality of
diffusion-based generative models [10, 3]. Specifically, this is done by combining two types of
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Figure 5: Demonstrations of generations changing from noises to robots with physical utility throughout the
diffusion sampling process. We present snapshots at diffusion times t = 600, 400, 200, 0 for all presented tasks.

classifier-free guidance as in (4); one source of guidance is derived from the task-driven embedding
optimization while the other is derived from embeddings from human-provided textual descriptions.
These two conditional scores, namely ϵθ(xt, t, cphysics) and ϵθ(xt, t, chuman), can then be integrated
into the diffusion as co-design framework as in (1). We refer the reader to the original papers for more
details and theoretical justification. We demonstrate examples of: the balancing robot with additional
text prompt "a ball", the crawling robot with additional text prompt "a star", the hurdling robot with
additional text prompt "a pair of wings", and the moving-a-box robot with additional text prompt
"thick". Interestingly, human feedback is introduced as an augmented "trait" to the original robot.
For example, while the hurdling robot keeps the tall, lengthy geometry that is beneficial for storing
energy for jumping, a wing-like structure appears at the top of the robot body instead of overwriting
the entire geometry. This allows users to design specific parts for composition while also embedding
fabrication and aesthetic priorities and constraints through text. We leave future explorations of these
ideas for future work.
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Figure 6: Comparison of robots generated by different baselines.

G Hardware Design and Fabrication

To create a real-world counterpart of the DiffuseBot, we fabricated a proof-of-concept physical robot
gripper, as illustrated in Figure 9(a). The gripper was designed to match the shape of the digital
gripper and successfully demonstrated its ability to grasp objects, as shown in Figure 10. A video
demonstrating the grasping process can be found on our project page (https://sites.google.
com/view/diffusebot).

During the translation from the simulated design to a physical robot, we aimed to minimize differences
between the simulated and physical designs. However, due to hardware and fabrication limitations,
certain modifications were necessary.

One such challenge involved replicating the arbitrary contraction force at the particles from the
simulation in the physical world. To address this, we employed tendon transmission as the actuation
method for the real-world gripper, which was found to be suitable for emulating interaction forces
from the digital world without introducing significant discrepancies. To enhance the stability of the
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Crawler + Human Feedback 
“A Unicorn”

Crawler From DiffuseBot

Figure 7: Incorporating human textual feedback.

Crawler + Text “A Round Disk”Crawler From DiffuseBot Hurdler From DiffuseBot Hurdler + Text “A Pair Of Wings”

Balancing Robot + Text “A Ball”Balancing Robot From DiffuseBot Box-moving Robot From DiffuseBot Box-moving Robot + Text “Thick”
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Figure 8: More examples of incorporating human textual feedback into robot generation by DiffuseBot.

tendon-driven actuation, we incorporated a rigid base ("Base" in Figure 9(a)) above the gripper itself
("Gripper" in Figure 9(a)). This base was designed to withstand the reaction force generated by the
tendon-driven actuation. Furthermore, we added four tendon routing points (represented by small
dotted circles in Figure 9(b)) on each finger to securely fix the tendon path. By utilizing four Teflon
tubes (shown in Figure 9(b)), we were able to position complex components such as motors, batteries,
and controllers away from the gripper, reducing its complexity.

The actuation strategy of the simulated gripper applies equal contraction force to both fingers simulta-
neously. To replicate this strategy, we employed underactuated tendon routing in the development
of the gripper. This approach eliminates the need for four separate actuators, thereby reducing the
complexity of the robot. We used tendon-driven actuators specifically designed for underactuated
tendon-driven robots as they solve practical issues such as size and friction issues that commonly
arise in such systems [9].

The soft gripper was 3D-printed using a digital light projection (DLP) type 3D printer (Carbon M1
printer, Carbon Inc.) and commercially available elastomeric polyurethane (EPU 40, Carbon Inc.).
To enhance the softness of the robot body beyond the inherent softness of the material itself, we
infilled the finger body with a Voronoi lattice structure, a metamaterial useful for creating a soft
structure with tunable effective isotropic stiffness [5, 11]. We generated a Voronoi lattice foam with
point spacing of 2.5mm, and a beam thickness of 0.4 mm as shown in the red boundary of Fig. 9(c).
Finally, we tested the soft gripper, designed and fabricated as described above, to verify its ability to
grasp an object, as shown in Figure 10.

14
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Figure 9: (a) shows a fabricated proof-of-concept physical robot gripper; (b) describes detailed robot configura-
tion; (c) represents interior structure design used to soften the robot body.

(a) (b) (c)

Figure 10: Grasping motion of the real-world soft gripper from DiffuseBot. Time order from (a) to (c). The
demo video can be seen at our project page.
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