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Abstract

Text-to-image diffusion models have recently received a lot of interest for their
astonishing ability to produce high-fidelity images from text only. Subsequent
research efforts are aiming to exploit the capabilities of these models and leverage
them for intuitive, textual image editing. However, existing methods often require
time-consuming fine-tuning and lack native support for performing multiple edits
simultaneously. To address these issues, we introduce LEDITS++, an efficient yet
versatile technique for image editing using text-to-image models. LEDITS++ re-
quires no tuning nor optimization, runs in a few diffusion steps, natively supports
multiple simultaneous edits, inherently limits changes to relevant image regions,
and is architecture agnostic.

1 Introduction

Recently, text-to-image models have gained increasing popularity for their ability to generate high-
quality images from text alone. A growing body of research is dedicated to utilizing these models for
intuitive, textual image editing. Unfortunately, current methods often require costly fine-tuning or
optimization to ensure reasonable reconstructions of the input image [12, 16, 3] or trade-in efficiency
improvements for unnecessarily strong image alterations [11, 15]. Moreover, none of the existing
approaches offer native support for performing multiple arbitrary edits simultaneously and in isolation.

To ease textual image editing, we present LEDITS++3, a novel method for efficient and versatile image
editing using text-to-image diffusion models. Firstly, LEDITS++ sets itself apart as a parameter-free
solution requiring no fine-tuning nor any optimization. We derive characteristics of an edit-friendly
noise space with a perfect input reconstruction, which were previously proposed for the DDPM
sampling scheme [11], for a significantly faster multistep stochastic differential-equation (SDE)
solver [14]. This novel invertibility of the DPM-solver++ facilitates editing with LEDITS++ in as
little as 20 total diffusion steps for inversion and inference combined.

Moreover, LEDITS++ places a strong emphasis on semantic grounding to enhance the visual and
contextual coherence of the edits. This ensures that changes are limited to the relevant regions in the
image, preserving the original image’s fidelity as much as possible. LEDITS++ also provides users
with the flexibility to combine multiple edits seamlessly, opening up new creative possibilities for
intricate image manipulations. Finally, the approach is architecture-agnostic and compatible with any
diffusion model, whether latent or pixel-based.

∗Equal contribution
†Work conducted as Research Intern at Adobe
3LEDITS++ stands for Limitless Edits with sde-dpm-solver++.
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Original Reconstruction LEdits++ (Ours) LEdits SDEdit LEdits++ Masks
+‘cherry blossom’ −‘yellow car ’ +‘green convertible ’

Figure 1: Exemplary edit performed using LEDITS++ in only 25 diffusion steps with Stable Diffusion 1.5. The
method perfectly reconstructs the input image, applies a complex, compounded edit, and grounds each change to
a semantically reasonable image region. LEDITS++ significantly outperforms previous methods in edit fidelity
and faithfulness to the input image.

We make the implementation of LEDITS++ as well as an interactive demo publicly available4 to
facilitate easy accessibility and experimentation.

2 LEdits++: Efficient and Versatile Textual Image Editing

The methodology of LEDITS++ can be broken down into three components: (1) efficient image
inversion, (2) versatile textual editing, and (3) semantic grounding of image changes. More in-depth
details and mathematical derivations of each component can be found in App. A.

Component 1: Image Inversion. Utilizing text-to-image models for editing real images requires
conditioning the generation of the input image. Recently, Huberman-Spiegelglas et al. proposed an
inversion technique [11] for the DDPM sampler [9] that addresses key limitations of the prevalent
DDIM inversion [16]. Specifically, their inversion perfectly reconstructs the input image, only needs
to be calculated for the number of timesteps used at inference, and requires no optimization for
error correction. We here demonstrate the same properties for the significantly faster SDE version
of the multistep dpm-solver++ [14]. Our results indicate that LEDITS++ with this second-order
sde-dpm-solver++ produces high-quality edits in 10-30 timesteps, depending on the complexity of
the changes. Fig 1 illustrates the reconstruction and the benefits of the improved scheduler. These
improvements are highlighted by the comparison with LEdits whose DDIM scheduler is incapable of
producing a high-fidelity image with this low number of diffusion steps.

Component 2: Textual Editing. Recently, Brack et al. proposed Semantic Guidance (SEGA) [2] to
control the image generation of diffusion models with arbitrary, textual concepts. We employ a similar
technique for editing real images with LEDITS++. More precisely, after inverting the input image
as described above, we calculate a dedicated guidance vector for each of the editing prompts at all
diffusion steps. The formulation of this guidance term ensures that concepts are largely isolated and
consequently do not interfere with each other. Additionally, this design choice lets the user control
the edit strength for each applied concept individually. As shown in Fig 1, these properties allow
for versatile and complex edits using intuitive instructions. The direct comparison with SDEdit [15]
further illustrates the benefits of dedicated guidance terms for each concept, as SDEdit is incapable
of faithfully executing multiple edit instructions from a single prompt.

Component 3: Semantic Grounding. Lastly, a capable image editing method should ensure a
balance between faithfully executing the edit instruction and minimal deviation from the input image.
LEDITS++’s properties of perfect reconstruction and sophisticated control over dedicated guidance
terms for each edit already contribute to achieving this balance. Additionally, we limit any change to
the specific image regions relevant to each edit. To this end, LEDITS++ demonstrates that attention
maps for the edit prompts can be extracted from the U-Net’s cross-attention layers to restrict edits
semantically. We intersect these coarse regions of interest with fine-granular implicit masks obtained
from the model’s noise estimates. Fig. 1 shows semantic grounding of the edits ‘cherry blossom’ and
‘green convertible’ to respectively relevant image regions, although both concepts were not present in
the original image. In comparison, LEdits and SDEdit both make substantial changes to irrelevant
parts of the image.

4code & demo at https://huggingface.co/editing-images/ledtisplusplus
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Societal Impact

With LEDITS++, we aim to provide an easy-to-use image editing framework. It lowers the barrier
of entry for experienced artists and novices alike, allowing them to unlock the full potential of
generative AI in the pursuit of creative expression. Moreover, it puts the user in control for fruitful
human-machine collaboration. Crucially, current text-to-image models [18, 17, 20] hold the potential
to wield a profound influence on society. When applied in creative and design domains, their dual use
offers both promise and peril, as highlighted by prior research [1, 6]. The models are trained on large
amounts of data from the web [22], granting them the inherent capacity to generate content that may
contravene societal norms, including the creation of inappropriate material like pornography [21].
More alarmingly, the inadvertent generation of inappropriate content is precipitated by spurious
correlations within these models. Harmless prompts can lead to the creation of decidedly objectionable
content [1]. A prime example of this phenomenon lies in the correlation between specific phrases
and the perpetuation of stereotypes, such as the connection between mentions of ethnicity and
economic status. For example, an increase of the concept ‘black person’ may inadvertently amplify
the appearance of the concept ‘poverty.’ Conversely, methods like LEDITS++ also possess the
potential to mitigate bias and inappropriateness, a prospect highlighted by prior reserach [6, 5],
e.g. through dataset augmentation [19]. Furthermore, established strategies offer means to mitigate
the generation of inappropriate content [21, 7] that could deployed in tandem with LEDITS++. In
summary, we advocate for a cautious approach to the utilization of these models, recognizing both
the risks and promises they bring to the realm of AI-powered image editing.
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Original +‘pencil sketch’ Original +‘van gogh painting ’

(a) Style Transfer
Original +‘sunglasses ’ Original +‘medieval bridge’

(b) Addition of concepts/objects
Original −‘crowd, people’ Original −‘glasses ’

(c) Removal of concepts/objects
Original −‘salami ’ +‘mushrooms ’ Original −‘lemons ’ +‘apples ’

(d) Complex replacements of objects

Figure 2: Further examples highlighting the versatility of LEDITS++ on 4 different editing tasks. All
examples were generated with the implementation based on Stable Diffusion v1.5. The ‘Orginal’
image shows the respective VAE reconstruction of the input.

A Detailed Methodology

Subsequently, we derive the inner workings and intuition of LEDITS++ in detail.

A.1 Guided Diffusion Models

Let us first define some background on diffusion models (DM) in general. DMs iteratively denoise
a Gaussian distributed variable to produce samples of a learned data distribution. Let’s consider a
diffusion process that gradually turns an image x0 into Gaussian noise.

xt =
√

1− βtxt−1 +
√
βtnt, t = 1, ..., T (1)

where nt are iid normal distributed vectors and βt is a variance schedule. Usually, the diffusion
process is equivalently expressed as
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xt =
√
ᾱtx0 +

√
1− ᾱtϵt (2)

where αt = 1 − βt, ᾱt = Πt
s=1αs and ϵt ∼ N (0, I). Importantly, all ϵt are not statistically

independent. Instead, consecutive pairs ϵt, ϵt−1 are strongly dependent, which will be relevant later.
To generate an (new) image x̂0 the reverse diffusion process starts from random noise xT ∼ N (0, I)
which can be iteratively denoised as

xt−1 = µ̂t(xt) + σtzt, t = T, ..., 1 (3)

Here zt are iid standard normal vectors, and common variance schedulers σt can be expressed in the
general form

σt = ηβt
1− ᾱt−1

1− ᾱt

where η ∈ [0, 1]. In this formulation, η = 0 corresponds to the deterministic DDIM [23] and η = 1
to the DDPM scheme [9]. Lastly, µ̂t(xt) corresponds to

µ̂t(xt) =
√
ᾱt−1

xt −
√
1− ᾱtϵ̂θ(xt)√
ᾱt

+
√

1− ᾱt−1 − σ2
t ϵ̂θ(xt)

Here ϵ̂θ(xt) is an estimate of ϵt produced by our neural network DM with learned parameters θ . For
text-to-image generation, the model is conditioned on a text prompt p to produce images faithful to
that prompt. The training objective of a DM x̂θ can be written as

Ex,cp,ϵ,t

[
wt||x̂θ(

√
ᾱtx0 +

√
1− ᾱtϵt, cp)− x0||22

]
(4)

where (x, cp) is conditioned on text prompt p, and wt influences the image fidelity depending on t.
Consequently, the DM is trained to produce the noise estimate ϵ̂θ(xt) needed for iteratively sampling
x̂0 (Eq. 3). For text-conditioned DMs, ϵ̂θ is calculated using some guidance technique.

Most DMs rely on classifier-free guidance [10], a conditioning method using a purely generative
diffusion model, eliminating the need for an additional pre-trained classifier. During training, the
text conditioning cp is randomly dropped with a fixed probability, resulting in a joint model for
unconditional and conditional objectives. During inference, the score estimates for the x-prediction
are adjusted so that:

ϵ̂θ(xt, cp) := ϵ̂θ(xt) + sg(ϵ̂θ(xt, cp)− ϵ̂θ(xt)) (5)

with guidance scale sg and ϵ̂θ defining the noise estimate with parameters θ. Intuitively, the uncondi-
tioned ϵ-prediction is pushed in the direction of the conditioned one, with sg determining the extent
of the adjustment.

A.2 Inversion

Utilizing text-to-image models for editing real images requires conditioning the generation on the
input image. One of the first emerging approaches simply added noise to the image (Eq. 2) for an
intermediate step in the diffusion process, e.g., t = 0.5T [15]. Subsequently, the remaining diffusion
steps can be performed using this intermediate xt and an edit prompt p (Eq. 3). However, the resulting
image is likely to diverge significantly from the input since it is partially regenerated. Performing prior
tuning of the model to reproduce the input image is feasible [12] but not computationally efficient.
Consequently, recent works have largely relied on inverting the deterministic DDIM sampling process
to identify a xT that will be denoised to the input image x0. However, faithful reconstructions are
only obtained in the limit of small steps, thus requiring large numbers of inversion steps. And even
when using T inversion steps, a small error will incur at each timestep, often accumulating into
meaningful deviations, specifically when using classifier-free guidance.

Recently, Huberman-Spiegelglas et al. proposed an inversion technique [11] for the DDPM sampler
[9] that addresses key limitations of the prevalent DDIM inversion [16]. In addition to the edit-friendly
properties of this noise space demonstrated by Huberman-Spiegelglas et al., the method only requires
the same amount of timesteps during inversion, that will be used in the generative process. A perfect
reconstruction of x0 is achieved for any number of timesteps.
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Original Variations for edit prompt +‘sunglasses ’

Figure 3: LEDITS++ inherently provides meaningful variations of an edit instruction.

However, there exist more efficient schemes than DDPM for sampling diffusion models that greatly
reduce the required number of steps and consequently DM evaluations. We here propose a more
efficient inversion method by deriving the desired inversion properties for such a scheme. As
demonstrated by Song et al.[24], DDPM can viewed as a first-order stochastic differential equation
(SDE) solver when formulating the reverse diffusion process as an SDE. In fact, this SDE can be
solved more efficiently—i.e. in fewer steps—using a higher-order differential equation solver, here
dpm-solver++ [14]. The reverse diffusion process from Eq. 3 for the second-order sde-dpm-solver++
can be written as

xt−1 = µ̂t(xt, xt+1) + σtzt, t = T, ..., 1 (6)

where now
σt =

√
1− ᾱt−1

√
1− e−2ht−1zt

and µ̂t not only depends on xt, but also xt+1

µ̂t(xt, xt+1) =

√
1− ᾱt−1√
1− ᾱt

e−ht−1xt +
√
ᾱt−1(1− e−2ht−1)ϵ̂θ(xt)

+ 0.5
√
ᾱt−1(1− e−2ht−1)

ht
ht−1

(ϵ̂θ(xt)− ϵ̂θ(xt+1))

with
ht = ln(

√
ᾱt)− ln(1−√

ᾱt)− ln(
√
ᾱt+1)− ln(1−√

ᾱt+1)

For the detailed derivation of the solver and proof of faster convergence, we refer the reader to the
relevant literature [14, 13]. Now we can devise our inversion process. Given an input image x0 we
construct an auxiliary reconstruction sequence of noise images x1, ..., xT as

xt =
√
ᾱtx0 +

√
1− ᾱtϵ̃t (7)

where ϵ̃t ∼ N (0, I). The key difference to Eq. 2 is that ϵ̃t are statistically independent, which is a
desirable property for image editing [11]. Lastly, the respective zt for the inversion can be derived
from Eq. 6 as

zt =
xt−1 − µ̂t(xt, xt+1)

σt
, t = T, .., 1 (8)

Importantly, we base our implementation on the multistep variant of sde-dpm-solver++, which only
requires one evaluation of the DM at each diffusion timestep by reusing the estimates from the
previous step.

The required number of timesteps can be reduced further by stopping the inversion at an intermediate
step t < T and beginning the generative process at that step. Empirically, we observed that
t ∈ [0.9T, 0.8T ] usually produces edits of the same fidelity as t = T , indicating that earlier timesteps
are less relevant to the edit. Furthermore, the stochastic nature of our non-deterministic inversion
easily provides meaningful variations of an edit by resampling ϵ̃t. As shown in Fig. 3 this provides
even more versatility to the user.
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A.3 Editing

After constructing our reconstruction sequence x1, ..., xT and calculating the respective zt, we now
edit the image by manipulating the noise estimate ϵ̂θ based on a set of edit instructions ei. In line with
the mathematical derivations from prior research [2, 10], we devise a dedicated guidance term for each
concept e based on conditioned and unconditioned estimates. Let us formally define LEDITS++’s
guidance by starting with a single editing prompt. We compute

ϵ̂θ(xt, ce) := ϵ̂θ(xt) + γ(xt, ce) (9)

with guidance term γ. Consequently, setting γ = 0 will reconstruct the input image x0. Intuitively
we construct γ to push the unconditioned score estimate ϵ̂θ(xt)—i.e. the input image reconstruction—
away from/towards the edit concept estimate ϵ̂θ(xt, ce), depending on the guidance direction.

γ(xt, ce) = ϕ(ψ; se, λ)ψ(xt, ce) (10)

where ϕ applies an edit guidance scale se element-wise, and ψ depends on the edit direction:

ψ(xt, ce) =

{
ϵ̂θ(xt, ce)− ϵ̂θ(xt) if pos. guidance
−
(
ϵ̂θ(xt, ce)− ϵ̂θ(xt)

)
if neg. guidance

(11)

Thus, changing the guidance direction is reflected by the direction between ϵ̂θ(xt,ce) and ϵ̂θ(xt).
The term ϕ identifies those dimensions of the image and respective ϵ̂ that are relevant to a prompt
e. Consequently, ϕ returns 0 for all irrelevant dimensions and a scaling factor se for the others. We
describe the construction of ϕ in App A.4. Larger se will increase the effect of the edit, and λ ∈ (0, 1)
reflects the percentage of the pixels selected as relevant by ϕ. Notably, for a single concept e and
uniform ϕ = se, Eq. 9 generalizes to the classifier-free guidance term in Eq. 5.

For multiple ei, we calculate γit as described above with each defining their own hyperparameter
values λi, sie. The weighted sum of all γit results in

γ̂t(xt, cp; e) =
∑

i∈I
γit(xt, cei) (12)

A.4 Masking

The masking term ϕ can be derived as the intersection (pointwise product) of binary masks M1 and
M2 combined with scaling factor se

ϕ(ψ; sei , λ) = seiM
1
i M

2
i (13)

where M1
i is a binary mask automatically generated from the U-Net’s cross-attention layers and M2

i
is a binary mask derived from the edit-conditioned noise estimate. Intuitively, M1

i is more strongly
grounded than M2

i , but of significantly coarser granularity. Therefore, the intersection of the two
yields a mask both focused on relevant image regions and of fine granularity. While attribution
maps derived from the cross-attention layers of the U-Net have been utilized in prior work [4, 8],
LEDITS++ demonstrates that they are also able to capture regions of an image relevant to an editing
concept that is not already present. The calculation of a dedicated mask for each edit prompt ensures
that the corresponding guidance terms remain largely isolated, limiting interference between multiple
edits.

Formally, at each time step t, a U-Net pass with editing prompt ei is performed to generate cross-
attention maps for each token of the editing prompt. All cross-attention maps of the smallest resolution
(e.g., 16x16 for SD) are averaged over all heads and layers, and the resulting maps are summed over
all editing tokens, resulting in a single map Aei

t ∈ R16x16. Importantly, we utilize the same U-Net
evaluation ϵ̂θ(xt, ce) already performed in Eq. 11. Each map Aei

t is up-sampled to match the size of
xt. Cross-attention mask M1 is derived by calculating the λ-th percentile of up-sampled Aei

t and

M1 =

{
1 if |Aei

t | ≥ ηλ(|Aei
t |)

0 else
(14)
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where ηλ(| · |) is the λ-th percentile.

By definition, M1 only selects image regions that correlate strongly with the editing prompt, and the
size of the selected image region is determined by λ.

Similar to prior work [2], the fine-grained mask M2 is calculated based on the guidance vector ψ
of noise estimates calculated in Eq. 11. The difference between unconditioned and conditioned ϵ̂θ,
generally captures outlines and object edges of xt. Consequently, the largest absolute values of ψ
provide meaningful segmentation information of fine granularity for M2

M2 =

{
1 if |ψ| ≥ ηλ(|ψ|)
0 else

(15)

In general, the threshold λ should be chosen to reflect the type of performed edit. Changes affecting
the entire image, such as style transfers, should choose smaller λ → 0, whereas edits targeting
specific objects or regions should use λ proportional to the regions prominence in the image.
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