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Abstract

The act of telling stories is a fundamental part of what it means to be human.
This work introduces the concept of narrative information, which we define to
be the overlap in information space between a story and the items that compose
the story. Using contrastive learning methods, we show how modern artificial
neural networks can be leveraged to distill stories and extract a representation of
the narrative information. We then demonstrate how evolutionary algorithms can
leverage this to extract a set of narrative templates and how these templates—in
tandem with a novel curve-fitting algorithm we introduce—can reorder music
albums to automatically induce stories in them. In the process of doing so, we give
strong statistical evidence that these narrative information templates are present in
existing albums. While we experiment only with music albums here, the premises
of our work extend to any form of (largely) independent media.

1 Introduction

!☕#

The complete story can be decomposed 
into the structure of the story and the 
narrative information of the items

The information contribution of an item 
to the story, i.e., the overlap between 
the two in information space, is called 
the narrative information of the item

The story itself must also exists 
somewhere in information space

Each item that makes up a story must 
exists somewhere in information space 

# ☕!

Figure 1: If a story is a structured collection of
items, then—in information space—the story must
have some overlap with each of the items. We call
this overlap the narrative information of the items.

When presenting a media collection, the se-
quence in which items are displayed can signif-
icantly impact the overall narrative and impres-
sion. While this ordering is often meticulously
curated in venues like art galleries, larger col-
lections or less prioritized venues might rely on
arbitrary arrangements for cost efficiency. We in-
troduce a data-driven method to convey desired
narratives by organizing media. Specifically, we
use information theory and deep learning to dis-
till elements of stories down to an essential form.
We then use evolutionary algorithms and a novel
curve-fitting algorithm to learn a set of template
curves and fit collections to these templates.
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Figure 2: (left) Assignment of individual songs to increasing numbers of template curves learned
with narrative essence. Colors show post-hoc analysis to try and find similar prototypical curves.
(right) The performance on the FMA validation set of the templates learned with narrative essence.

2 Narrative Essence and Story Templates

We study stories as collections of basic elements (atoms) and their meaningful ordering, termed
the narrative. The narrative information of an atom is its relevance to the overall story, depicted in
Figure 1. We propose that ordering a media collection can create a desired narrative, allowing for
different storytelling structures like climaxes or gradual build-ups. Every atom has inherent properties
influencing its role in a story. This leads to the concept of narrative essence, a learned representation
emphasizing an atom’s most narrative-relevant features. Formally, we define as narrative essence
fE(x) of atom x, generated by a feature extractor fE , as the feature which maximizes the mutual
information between the unordered set of features of the atoms in a collection c and the ground
truth order o(c) of c: fE = argmaxf I

(
{f(x)|x ∈ c}; o(c)

)
. As described in Appendix C, we use

contrastive learning to learn a feature extractor fE for music albums from the FMA dataset [4].

Narrative arcs, present in dramatic arts like novels and plays, vary in structure (e.g., tragedies,
comedies). Different media have distinct arcs. Using the genetic algorithms described in Appendix D
and our learned narrative essence extractor, we derive story template curves from music albums
in the FMA dataset. Figure 2, left, shows the narrative templates found for the training split. We
employ a novel curve-fitting algorithm (described in Appendix E) to assess the templates’ accuracy
and compare the original album ordering to our fitted sequences using a string edit score. Our results,
compared against both random orderings and shuffled in-album narrative essence scores (see Figure 2,
right), show that the narrative essence and the learned templates at least partially explain existing
album ordering (p < 0.05; see Appendix B).

3 Related Work

The use of machine learning to derive narrative arcs has previously been explored by Reagan et al.
[15]—who derive the emotional arc of stories from a corpus of English texts. Mathewson et al. [14]
use an information-theoretic approach to design a narrative arc and applied this to dialogue generation.
There exists a considerable body of work in music playlist continuation [2, 13, 19]. For music playlist
ordering, work remains sparse. For a detailed overview of spatial representation of musical form, see
Bonds [1]. Contrastive methods for learning representations of perceptual data [3, 6], including music
[17], have recently gained much attention. Most similar to our approach of learning narrative essence
are methods that maximize mutual information between local and global representations [8, 12].

4 Conclusion

We explored how stories manifest in independent media collections, introducing the concept of
narrative essence to capture an element’s role in the narrative. Using neural networks and contrastive
learning, we learned a feature extractor that distills music tracks to their narrative essence. We then
used genetic algorithms to learn a set of narrative template curves and a new curve-fitting algorithm
to order collections using these templates. We gave statistical evidence that the ordering of music
albums can be partially explained by our system. Though our focus was on music, our approach
applies to any (largely) independent set of media. We give a demonstration of the practical outcome
of this work in Appendix A.
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5 Ethical Implications

The above work seeks to automate part of the artistic process and so may empower artists, but could
likewise reduce their demand and potentially put individuals’ immediate employment at risk. Beyond
this, the authors foresee no notable ethical implications of this work. The authors would like to
encourage anyone noting such implications to reach out to the authors directly.
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A Demonstration

Figure 3 in gives a demonstration of the practical application of this work. Here, we used the narrative
essence of the tracks in Michael Jackson’s Thriller to fit the album to the four distinct narrative
template curves given in Figure 2, left. By doing so, we have induced several different stories in the
album. The methods presented here can trivially carry out the same task with any album.

Wanna Be Startin' Somethin'
Baby Be Mine
The Girl is Mine (with Paul McCartney)
Thriller
Beat It
Billie Jean
Human Nature
P.Y.T. (Pretty Young Thing)
The Lady in My Life

1 0 1
Narrative Essence

Wanna Be Startin' Somethin'
Thriller
Baby Be Mine
The Lady in My Life
The Girl is Mine (with Paul McCartney)
P.Y.T. (Pretty Young Thing)
Human Nature
Beat It
Billie Jean

1 0 1
Narrative Essence

P.Y.T. (Pretty Young Thing)
Baby Be Mine
Billie Jean
Wanna Be Startin' Somethin'
The Lady in My Life
Thriller
Beat It
Human Nature
The Girl is Mine (with Paul McCartney)

1 0 1
Narrative Essence

Baby Be Mine
Wanna Be Startin' Somethin'
Human Nature
Thriller
Beat It
Billie Jean
The Girl is Mine (with Paul McCartney)
The Lady in My Life
P.Y.T. (Pretty Young Thing)

1 0 1
Narrative Essence

Baby Be Mine
Human Nature
Wanna Be Startin' Somethin'
Billie Jean
Beat It
P.Y.T. (Pretty Young Thing)
The Girl is Mine (with Paul McCartney)
The Lady in My Life
Thriller

Original Album
Fitted Playlist
Narrative Template Curve 1
Narrative Template Curve 2
Narrative Template Curve 3
Narrative Template Curve 4

Figure 3: Narrative essence of the album Thriller by Michael Jackson—the best-selling original
album of all time [16]—in the original order, and fitted to the four narrative template curves found
using the method described in Section 2.
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B Evidence for the Existence of Story Templates

An important question we must address while looking at Figure 2, right, is whether or not the
improvement of the learned curves over the baselines is significant. This is equivalent to asking if the
order of the albums is partially explained by the valence and thus if the narrative structures discovered
by our algorithm exist within music albums. To answer this, we compare the mean string edit score
for the selected k = 4 templates with the mean string edit score for both baselines on the test set. We
find that the difference observed is significant with a family-wise error rate of p < 0.05 using t-tests
with Holm-Bonferroni corrections.
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C Learning Narrative Essence From Data

A narrative essence extractor fE can be learned using a dataset of ordered media collections. We do
this using noise contrastive estimation [7]—specifically, a modification of InfoNCE [20]. The idea, as
shown in Figure 4, is the following: we give each item in a collection to a learnable feature extractor
fθ: a neural network with parameters θ. A second learnable function gϕ: a recurrent neural network
with parameters ϕ, takes a sequence s of features as input and produces a scalar score gϕ(s). If gϕ
receives a sequence in the correct ground-truth order, s∗ = (fθ(x1), fθ(x2), fθ(x3), ...), it should
produce a high score. For randomly ordered sequences, it should produce a low score. This can
only be achieved by gϕ if (1) the correct orders of the collections in our dataset have some property
that distinguishes them from random orders, and (2) fθ learns some atom-wise feature that lets gϕ
recognize this property. Feature extractor fθ and sequence model gϕ are jointly trained to minimize
the loss

LN(θ, ϕ;D) = −ES∼D

[
log

gϕ(s
∗)∑

s∈S gϕ(s)

]
, (1)

where D is the dataset of collections with a ground truth order, and S is a set of N sequences that
include the correctly ordered sequence s∗. The other N − 1 sequences in S are random permutations
of s∗. The extracted features should be normalized across the sequence so that gϕ considers the
relative, and not the absolute value, of the extracted feature.

In analogy to van den Oord et al. [20], we prove in Appendix C.5 that minimizing LN maximizes a
lower bound on the narrative information, i.e., the mutual information between the atom-wise features
extracted by fθ and the order of the collection:

I
(
{fθ(x)|x ∈ c}; o(c)

)
≥ log(N)− LN. (2)

C.1 Narrative Essence in Music Albums

We empirically investigate the concept of narrative essence using the example of music albums. We
selected the FMA dataset [4] as it is—at the time of writing—the largest open music album dataset
that includes raw audio files.

While, in principle, highly sophisticated and specialized feature extraction architectures could be
used for fθ, in our experiments, we restrict ourselves to relatively simple and computationally cheap
methods. Each track is represented by features commonly used in music information retrieval that
come pre-computed with the available dataset. These features form a sequence of 75 vectors of
size 7 (for more details, see Section C.3). This sequence is the input to the feature extractor fθ, for
which we use a bidirectional LSTM model [5, 9]. We choose a recurrent feature encoder instead of a
feed-forward architecture to give fθ more powerful conditional processing abilities.

The output of fθ is the narrative essence of the given song. In principle, the narrative essence could
be a vector of any size. However, Table 1, which shows the results of twenty-five runs using the
FMA validation set, demonstrates that a higher dimensional narrative essence leads to only marginal
improvements in mutual information captured. These diminishing returns provide strong evidence
that narrative essence, at least for songs in the context of a music album, can be represented as a
scalar value. Note that even a low-dimensional version of narrative essence still captures something
much more sophisticated than a basic ranking. A benefit of using a scalar for narrative essence is that
it is directly comparable to other available scalar features (see Section C.2).

Like in Figure 4, we model gϕ as a bidirectional LSTM as well. It takes a sequence of narrative
essence features as input and computes a scalar score. In comparison to fθ, gϕ has a lower capacity
(fewer learnable parameters and more regularization) because there are much fewer full collections
(albums) than individual items (songs). Thus gϕ is at a considerable risk of overfitting. The specific
hyperparameters we use are provided in Appendix C.4. When trained on the full FMA training set2,
the extracted narrative essence achieves a mutual information with the album ordering, as determined
by Equation 2, of ca. 1.924 bits on the validation set.

2Note that here and everywhere else we have excluded albums with less than 3 or more than 20 tracks.
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4. P.Y.T.

3. Beat It

2. Human Nature

1. Billie Jean

Wrong Orderings

4. P.Y.T.

3. Human Nature

2. Billie Jean

1. Beat It

Correct Ordering

?

P.Y.T.Beat ItHuman NatureBillie Jean

To predict the ordering, the 
network extracts the narrative 
essence

The overall task of the network is to 
determine if the album has been 
shuffled or not

The network is forced to 
compress each song in the 
album into an ultra-low 
dimensional representation

A pre-processed album is fed 
to the network

Figure 4: To learn a network that can distill music tracks down to their narrative essence, we feed a
bidirectional recurrent neural network a pre-processed album and train it to determine whether the
album its been given has been shuffled or not. By creating a bottleneck between the encoder and the
recurrent layer we can control the dimensionality of the learned narrative essence.
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Table 1: Representation size and captured narrative information
Narrative Essence Size Mutual Information (in bits)

1 1.924± 0.0296
2 1.936± 0.0183
4 1.957± 0.0217
8 1.950± 0.0216
16 1.975± 0.0150

C.2 Narrative Essence in Comparison With Other Features

When treating the feature extractor fθ as fixed and only learning the scoring model gϕ to minimize
LN, we can use Equation 2 to approximate the mutual information between any available feature
and the collection orders. Here, we compare the narrative essence feature extracted using fθ learned
on the FMA dataset with some of the other features available in the dataset. To do so, we learn
a dedicated scoring model gϕ for each available feature—including energy, tempo and valence: a
feature designed to capture the mood of a song, roughly ranging from sad to happy [18]. As shown
in Figure 5, narrative essence has more mutual information with the album order than any of the
other features. The mutual information lower bounds seen in Figure 5 are significantly lower than
the ones achieved when training on the full dataset (compare Table 1). This discrepancy is because
only a limited subset of the FMA dataset includes the listed pre-computed features when learning
the scoring models. Nevertheless, these results show that our formulation of narrative essence, in
combination with the very general processing techniques (i.e., global track feature statistics and an
LSTM encoder), robustly outperforms highly engineered features as a candidate for the narrative.

Figure 6 shows the correlation of the learned narrative essence feature with eight other features. Here
we see a high correlation with the features we expect to be associated (i.e., valence, energy) and
a low correlation with more technical or applied features like acousticness, instrumentalness, and
liveness. Note that the orientation (sign) of the narrative essence is simply a random product of the
initialization and has no further meaning; the negative of the narrative essence would have exactly the
same amount of mutual information with the collection order.

0.0 0.2 0.4 0.6 0.8
Mutual Information with Album Order

Liveness

Instrumentalness

Energy

Acousticness

Speechiness

Tempo

Valence

Danceability

Narrative Essence

Figure 5: The lower bound of the mutual in-
formation in bits between different features
and the album order, calculated on the subset
of the FMA validation set that includes va-
lence. Results are shown over five seeds.

0.25 0.20 0.15 0.10 0.05 0.00
Correlation Coefficient with Narrative Essence

Acousticness

Instrumentalness

Liveness

Speechiness

Tempo

Danceability

Energy

Valence

Figure 6: The Pearson correlation coefficient of
different features with the narrative essence on the
subset of the FMA dataset that includes valence.

C.3 Track Input Features

The FMA dataset provides the following track features: 12 Chroma features, 6 Tonnetz features, 20
MFCC features, Spectral centroid, Spectral bandwidth, 7 Spectral contrast features, Spectral rolloff,
RMS energy and Zero-crossing rate.

For every feature, 7 global statistical properties are given: mean, standard deviation, skew, kurtosis,
median, minimum and maximum. We treat these statistical properties as a vector and construct a
sequence of these vectors from the 75 features, which constitutes the input for the narrative essence
extractor fθ. The length of this feature sequence is constant, independent of the track’s length.
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For tracks that are not included in the FMA data, these features can easily be computed directly from
audio standard MIR techniques (the implementation is provided by [4]). Before giving the sequence
to gϕ, learnable start- and end-of-sequence tokens are added.

C.4 Model Hyperparameters

All models described in this section have the same hyperparameters. The batch size is 16, N is 32
(that means we have 31 negative samples for each example in the batch).

The feature encoder fθ is a bidirectional LSTM with 2 layers, 7 input features, 128 hidden units and
a sigmoid output nonlinearity. For regularization we use dropout of 0.1 and no weight decay.

The sequence scoring model gϕ is also bidirectional LSTM with 2 layers. It has 32 hidden units and
no output nonlinearity. For regularization we use no dropout and a weight decay of 10−5.

For both models, we use the Adam optimizer with a learning rate of 10−4, and early stopping based
on the validation loss.

C.5 Narrative Essence and Mutual Information

Recall that c is an unordered collection of items x, and o(c) is its correct order. S is a set of N
sequences of the encoded items, containing the correct sequence s∗ = (fθ(x1), fθ(x2), fθ(x3), ...)
(i.e., the one adhering to o(c)), and N−1 random permutations of s∗. The probability that a particular
sequence si from S is the correct sequence s∗ is

p(si = s∗|S, o(c)) = p(si = s∗, S|o(c))∑
j p(sj = s∗, S|o(c))

=
p(si = s∗)p(S|si = s∗, o(c))∑
j p(sj = s∗)p(S|sj = s∗, o(c))

=
p(si = s∗)p(si|o(c))

∏
l ̸=i p(sl)∑

j p(sj = s∗)p(sj |o(c))
∏

l ̸=j p(sl))

=
1
N p(si|o(c))

∏
l ̸=i p(sl)∑

j
1
N p(sj |o(c))

∏
l ̸=j p(sl))

=
p(si|o(c))

∏
l ̸=i p(sl)∑

j p(sj |o(c))
∏

l ̸=j p(sl))
·
∏

k p(sk)∏
k p(sk)

=

p(si|o(c))
p(si)∑

j
p(sj |o(c))

p(sj)

.

With Equation 1, gϕ(s) is trained to estimate the density ratio p(s|o(c))
p(s) . This means that we can write

(following the steps from [20])

Lopt
N = −ES∼D log

 p(s∗|o(c))
p(s∗)

p(s∗|o(c))
p(s∗) +

∑
s∈Sneg

p(s|o(c))
p(s)


≈ ES∼D log

[
1 +

p(s∗)

p(s∗|o(c))
(N − 1)

]
≥ ES∼D log

[
p(s∗, o(c))

p(s∗)p(o(c))
N

]
= −I(s∗; o(c)) + log(N)

= −I(fE(x1), fE(x2), fE(x3), ...; o(c)) + log(N).
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D Story Template Extraction Algorithm

Extracting a set of narrative arc templates from a collection of albums can be done using Algorithm 1.
Note that this algorithm is general and can make use of any collection of media if the narrative
essence is replaced by a semantically similar metric. In our experiments, we always used x =
[0.0, 0.2, 0.3, 0.5, 0.65, 0.8, 1.0]T . To derive the value of a template at a given x, cubic-spline
interpolation is recommended; for the cost of fitting an album to a template, using the mean-squared
error is recommended.

Algorithm 1 Story Template Extraction
Input: x = [x0, x1, ..., xq]

T where xi is the relative position of the i-th point in the desired
templates and a set of albums {a1,a2, ...,an} with each ai = {(u0, v0), (u1, v1), ..., (um, vm)}T
where uj is the relative position of track j in the album, and vj is the normalized narrative essence of
track j

Output: set of templates {t1, t2, ..., tp} with each ti = [y,y1, ..., yq]
T where yj is the

normalized narrative essence of the j-th point in the template

1: s← population size
2: b← number of children for each generation
3: for i ∈ {1..s} do
4: for j ∈ {1..p} do
5: for k ∈ {1..q} do
6: P [i, j, k]← N (0, 1)
7: end for
8: end for
9: end for

10: while not done do
11: σ = N (0, 1)
12: for i ∈ {1..b} do
13: father ← random integer in {0, 1, ..., s}
14: mother ← random integer in {0, 1, ..., s} − {father}
15: for j ∈ {1..p} do
16: for k ∈ {1..q} do
17: P [s + i, j, k] ← P [father, j, k] with probability p and P [mother, j, k] with

probability 1− p
18: P [s+ i, j, k]← P [s+ i, j, k] +N (0, σ)
19: end for
20: end for
21: end for
22: for i ∈ {1..(b+ s)} do
23: ci ← minimum cost as defined in Equation 3 for fitting albums using the templates

P [i, :, :]
24: end for
25: order P in increasing order of corresponding c
26: P ← P [1 : s, :, :]
27: end while
28: return P

While many different cost functions for a set of templates could be used here, we use the following:

c =

n∑
i=1

min
p

1

li

li∑
j=1

(vi(j)− tp(jr))
2
, (3)

where n is the number of albums in the training set, li the number of tracks in album i, vi(j) the
normalized narrative essence value of the jth track of album i, and tp(jr) is the value of template p at
the relative position jr = (j − 1)/(li − 1). We learn these templates using the training split provided
by the FMA dataset and evaluate them on the validation split by fitting the narrative essence of each
album to the templates using the algorithm given in Appendix E.
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E Template Curve Fitting Algorithm

Deriving an ordering of the media such that their respective values fit a narrative template can be
done using Algorithm 2. The ordering Algorithm 2 finds will be minimal first in the maximum
deviation of a value from the template curve and minimal second in the average deviation of values
from the template curve. For n items, the worst-case time complexity of this algorithm—provided
efficient bipartite matching algorithms such as Hopcroft-Karp [10] and LAPJVsp [11] are used—is
in O(n3). In most applications of this work—and for all but the largest collections of independent
media—extracting the values that will be fitted will consume vastly more time than the fitting itself.

Algorithm 2 Template Curve Fitting
Input: normalized values to fit y and template curve function f with domain and range [0, 1]
Output: ordering x over values y such that the i-th value in the ordering is x[i]

1: z←
[
f( 0

|y|−1 ), f(
1

|y|−1 ), ..., f(
|y|−1
|y|−1 )

]T
2: d← yzT

3: a← 1
4: b← |d|
5: while a ̸= b do
6: p← a+ ⌊(b− a)/2⌋
7: L,R← {1..|y|}
8: E ← {(i ∈ L, j ∈ R) | ∥y[i]− z[j]∥ ≤ d[p]}
9: if ∃ perfect matching for bipartite graph (L,R,E) then

10: b← p
11: else
12: a← p+ 1
13: end if
14: end while

15: L,R← {1..|y|}
16: E ← {(i ∈ L, j ∈ R, ∥y[i]− z[j]∥) | ∥y[i]− z[j]∥ ≤ d[a]}
17: M ← minimum-cost perfect matching for weighted bipartite graph (L,R,E)
18: for i ∈ {1..|y|} do
19: for j ∈ {1..|y|} do
20: if (i, j) ∈M then
21: x[j] = i
22: end if
23: end for
24: end for

25: return x
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F Source Code

A practical implementation of this paper is available at https://github.com/dylanashley/story-distiller

An implementation of the algorithm described in Appendix C can be found at https://github.com/vin
centherrmann/narrative-essence

An implementation of the algorithm described in Appendix D can be found at https://github.com/dyl
anashley/story-template-extraction

An implementation of the algorithm described in Appendix E can be found at https://github.com/dyl
anashley/playlist-story-builder
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