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Abstract

There are some 5,500 confirmed Exoplanets beyond our solar system. Though
we know these planets exist, most of them are too far away for us to know what
they look like. In this paper, we develop an algorithm and a model to translate any
given exoplanet’s numeric data into a text prompt that can be input into a trained
latent diffusion model to generate a predictive visualization of that exoplanet. This
paper describes a novel approach of translating numeric data to textual descriptors
formulated from prior accepted astrophysical research. These textual descrip-
tions are paired with photographs and artistic visualisations from NASA’s public
archives to build a training set for a latent diffusion model, which can produce new
visualizations of unseen distant worlds.

1 Introduction

Latent diffusion models offer a powerful and easily controllable form of image generation [12]. When
conditioned with text and guided with a contrastive learning algorithm like CLIP [10], models can be
trained to learn powerful associations between text and images. Using the numerical data provided
in NASA’s exoplanet dataset [1], we develop an algorithm that creates descriptive text prompts for
each planet, based on established principals in astrophysics. We pair these generated prompts with
available photographs and artistic renderings of near and distant planets from NASA’s image library
[3], to build a dataset of text image prompts. A text-conditioned, latent diffusion model is trained on
this dataset, which is capable of generating visualizations of previously unseen exoplanets.

2 Describing Exoplanets with Natural Language

The NASA exoplanet dataset contains 35,086 records of more than 5,500 confirmed exoplanets [1].
A multitude of data points for these planets is recorded, such as the name of the exoplanet and star
system, their respective masses, the distance from the planet to the star and the orbital period of
the planet (see Table 2 for a full breakdown of variables used in this work). This data is collected,
reviewed, and confirmed by orbiting satellites through the radial velocity or the transit method [15].
Using this available data, we create an algorithm to provide textual descriptions that define the stellar
size, stellar color, planet category, planet size, planet color, planet spin (which determines weather
patterns), and determine whether a planet is tidal-locked.

The stellar size is determined by stellar mass as it is listed in the dataset, as a ratio between stellar
mass and planet mass, or as a textual descriptor ranging from tiny to massive (Table 14). The stellar
color is defined using one of three methods. If the stellar category is given using the Harvard spectral
classification system [6] (the foundation for the Morgan-Keenan classification system [17]) then that
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Figure 1: Exoplanet visualisation generated with our latent diffusion model, exoplanets visualised are
as follows: (a) 24 Boo b (b) 2MASS J01225093-2439505 b (c) HD 106315 b (d) HD 15906 c.

is used to determine the stellar color (Table 11). If that is not available, then the stellar temperature
(Table 12) or the stellar mass is used (Table 13).

We categorized each planet into one of four categories: terrestrial, super-earth, neptune-like, and
gas-giant [2] (Table 4). These categories allow us to make assumptions about a planet, such as it’s
size and temperature. A planet’s temperature can define planet color by researching the states of
matter and spectral emission and absorption for common chemicals in our Universe. As these planets
are too far away to conduct spectroscopy, the relationship between a planets equilibrium temperature
and chemical behaviors is a reasonable alternative [9]. For each of the four planet categories, we
provide text descriptions of their color based on their predicted chemical composition (Tables 5, 6 &
7).

We define the planet spin to predict potential weather patterns based on the planets orbital period and
the planet category [5]. Planet’s that spin quickly are more likely to have turbulent weather, and thus,
more visible cloud patterns [5]. The range of cloud formations defined based on this data is available
in Tables 8, 9, & 10. Finally, we determined whether the exoplanet is tidal-locked using the Roche
limit (Figure 3). Tidal locking is when a planet’s axial spin is the same as the planet’s orbital period
causing the side of the planet facing the sun to be extremely hot while the other side is extremely
cold [4]. If the calculated Roche limit is less than the planets impact parameter then the exoplanet is
likely tidal-locked.

3 Model Training

The images acquired for training the latent diffusion model were all sourced from NASA’s image
library [3]. The image dataset consists of 127 images split approximately 70% artistic renderings to
30% photographs. As the images are categorised by planet name, the corresponding text descriptions
of both the near planets (in our solar system) and exoplanets can be generated using the method
described above. A latent diffusion model is then trained on this dataset using the publicly available
Stable Diffusion 1.5 [11] as the starting model for training Low Rank-Adaptation matrices (LoRA)
[7] to adapt the model to the new data domain. Results from the trained model can be seen in Figure
1.

4 Discussion

Our aim was to translate numeric data within NASA’s exoplanet data into predictive images. Table
1 shows the end to end process of our system. By developing a bespoke algorithm for describing
exoplanets with natural language, we are able to create a meaningful mapping from numerical
exoplanet data to visual imagery. Given the available data, the chemical composition and the visual
characteristics cannot be known exactly, the descriptions are best guesses based on existing literature.
Since completing the work, predictions from our approach for the exoplanet K2-18 b have already
been validated by real-world data released by the James Webb Space Telescope [14]. A comparison of
the rendering from our approach and NASA artistic rendering can be seen in Figure 2. While obtaining
ground truth images for most of these exoplanets remains unfeasible with current technology, our
approach serves as a valuable tool for conceptualizing and comprehending these remote celestial
entities.
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5 Ethical Concerns

NASA’s Exoplanet dataset and Image and Video Library used for this project are in the public domain
and do not contain any personal, private, or secure information that could be potentially unethical.
The models and training of these models involve ethical concerns that require acknowledgment and
consideration for future use in this work. In April 2023, a lawsuit was filed against Stable Diffusion
for violating copyright protections of visual artists [16]. A resolution has not been reached, but
should Stable Diffusion be found guilty, further use of this research could result in the endorsement
of unethical and illegal business practices. This may not be a current concern for those interested
in this research but should be taken seriously for future iterations and applications. Furthermore,
running these GPUs consumes a significant amount of energy. It is estimated that training an AI
model, such as Stable Diffusion, could produce 626,000 pounds of CO2 [13]. Though fine-tuning a
model produces less CO2 than training one, it is necessary to consider the environmental effects of
reproducing and building on this type of research, particularly should it be expanded upon with larger
datasets or trained for a longer duration.
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Appendix

(a) (b)

Figure 2: Depictions of K2-18 b: (a) Visualization Published by the NASA, CSA & ESA James Webb
Telescope, reproduced under creative commons licence (CC BY 4.0 DEED) [8] (b) Visualization by
our trained model.

Roche Limit = 2.44 ·R
(
D

d

) 1
3

(1)

Where:

R is the radius of the larger body.
D is the density of the larger body.
d is the density of the smaller body.

Figure 3: Roche Limit formula with explanations.
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Exoplanet name HD 56957 b HIP 41378 c
Exoplanet data

• sy_snum: 1
• sy_pnum: 1
• sy_mnum: 1
• pl_orbper: 29.94992
• pl_rade: 3.71
• pl_bmassse: 13.3
• pl_dens: 1.43
• pl_eqt: 1133
• pl_imppar: 0.34
• pl_orbsmax: 0.229
• st_spectype: N/A
• st_teff: 8500
• st_rad: 1.75
• st_mass: 1.89

• sy_snum: 1
• sy_pnum: 5
• sy_mnum: 0
• pl_orbper: 15.572098
• pl_rade: 2.507
• pl_bmassse: 6.83
• pl_dens: 2.38
• pl_eqt: 697
• pl_imppar: 0.53
• pl_orbsmax: N/A
• st_spectype: F6
• st_teff: 6226
• st_rad: 1.34
• st_mass: 1.17

Generated
prompt

"A white, large star with a Neptune-
like planet. The planet is mostly blue
mixing with brown and red colors,
has clearly defined striped light and
dark clouds, and only has one side of
the planet facing the sun. The side
facing the sun is extremely hot and
the side that faces away from the sun
is dark and cold."

"A yellow white, medium star with
a super-earth planet. The planet is
white and pale yellow in color, is hot
and rotating quickly with little to no
clouds, and only has one side of the
planet facing the sun. The side facing
the sun is extremely hot and the side
that faces away from the sun is dark
and cold."

Generated image

Table 1: Examples of two exoplanets, with the original NASA data, the respective text description
and the resulting images generated from our latent diffusion model.
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Variable Description Unit of Measurement
sy_snum Number of stars in the system Star(s)
sy_pnum Number of planets in the system Planet(s)
sy_mnum Number of moons in the system Moon(s)
pl_orbper Orbital period Earth days
pl_rade Planet radius Earth radius

pl_bmasse Planet mass Earth mass
pl_dens Planet density g/cm3

pl_eqt Planet equilibrium temperature Kelvin (K)
pl_imppar Impact parameter Distance between stellar and planet disc / stellar radius

pl_orbsmax Radius of longest elliptic orbit Astronomical units (AU)
st_spectype Spectral type Morgan-Keenan classification

st_teff Star effective temperature Kelvin (K)
st_rad Stellar radius Radius of the Sun

st_mass Stellar mass Mass of the Sun
Table 2: Data variables available from NASAs exoplanet database used for visualisation.

Planet mass Planet size
0 < x ≤ 0.0553 Tiny

0.0553 < x ≤ 0.107 Very Small
0.107 < x ≤ 0.815 Small
0.815 < x ≤ 1.0 Medium Small
1.0 < x ≤ 14.5 Medium
14.5 < x ≤ 17.1 Large
17.1 < x ≤ 95.2 Giant

95.2 < x Massive
Table 3: Planet mass descriptions where x is planet mass (given in units of masses of the Earth)

Planet mass Planet category
0 < x ≤ 2.0 Terrestrial

2.0 < x ≤ 10.0 Super Earth
10 < x ≤ 17 Neptune-Like

17 < x Gas Giant
Table 4: Planet category descriptions where x is planet mass (given in units of masses of the Earth).

Planet temperature Description
0 < x ≤ 20.0 Hydrogen and Helium producing a distinct white color

20.0 < x ≤ 200.0 High quantities of methane known for its rich blue color
200.0 < x ≤ 400.0 Blue methane and yellow ammonia, dominant color from blue liquid water
400.0 < x ≤ 600.0 Water vapor producing a true blue color mixing with methane
600.0 < x ≤ 800.0 Carbon dioxide and hydrocarbons, varying shades of blue and white
800.0 < x ≤ 1200.0 White carbon dioxide and pale yellow sulfur compounds
1200.0 < x ≤ 1700.0 Pale yellow sulfur compounds and blue and white water vapor

1700.0 < x Covered in lava due to high temperatures
Table 5: Terrestrial and Super-Earth planet color descriptions where x is equilibrium temperature
(given in Kelvin).
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Planet temperature Description
0 < x ≤ 90.0 Mostly helium and hydrogen, white with light blue from frozen methane

90.0 < x ≤ 110.0 Azure blue with methane as a liquid
110.0 < x ≤ 275.0 Deep blue with methane as a gas
275.0 < x ≤ 375.0 Dark blue methane, lighter blue water vapor, traces of ammonia
375.0 < x ≤ 500.0 Methane breaking down, pale yellow sulfur
500.0 < x ≤ 800.0 Methane breaking down, varying shades of blue from hydrocarbons
800.0 < x ≤ 900.0 Deep blue methane breaking down, silvery white from alkali metals
900.0 < x ≤ 1400.0 Deep blue methane breaking down, neutral or red from aerosols and thermal emissions

1400.0 < x Purple to red from aerosols, thermal emissions, and high-temperature gases
Table 6: Neptune-like planet color descriptions where x is equilibrium temperature (given in Kelvin).

Planet temperature Description
0 < x ≤ 70.0 Dull yellow from frozen ammonia, mixed with blue methane

70.0 < x ≤ 150.0 Dominant yellow from ammonia clouds
150.0 < x ≤ 250.0 Darker yellow, ammonia as a liquid
250.0 < x ≤ 350.0 Mostly white with slight blue tint from water vapor
350.0 < x ≤ 800.0 Uniform blue
800.0 < x ≤ 900.0 Transitioning from blue to silvery white from carbon monoxide and alkali metals
900.0 < x ≤ 1400.0 Silvery white from carbon monoxide and alkali metals

1400.0 < x Red from silicate and iron clouds
Table 7: Gas-giant planet color descriptions where x is equilibrium temperature (given in Kelvin).

Planet temperature Description
0 < x ≤ 88.0 Hot and rotating quickly with little to no clouds

88.0 < x ≤ 224.0 Hot and rotating quickly with swirling clouds in light and dark shades
224.0 < x ≤ 687.0 Thick clouds of various sizes

687 < x Thin clouds of various sizes
Table 8: Terrestrial and Super-Earth planet spin descriptions where x is orbital period (Earth days).

Planet temperature Description
x ≤ 30589.0 Clearly defined stripes of light and dark clouds

30589.0 < x ≤ 59800.0 Softly defined stripes of light and dark clouds
59800.0 < x Clouds of various colors blending together

Table 9: Neptune-like planet spin descriptions where x is orbital period (Earth days).

Planet temperature Description
x ≤ 30589.0 Clear, sharp-edge stripes of thick clouds

30589.0 < x ≤ 59800.0 Softly defined stripes of light and dark clouds
59800.0 < x Clouds of various colors blending together

Table 10: Gas-Giant planet spin descriptions where x is orbital period (Earth days).

Spectral type Stellar color
M orange red
K light orange
G yellow
F yellow white
A white
B blue white
O blue
T violet
L magenta

WD or D white
Table 11: Stellar color coding based on the Harvard spectral classification [6].
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Stellar temperature Stellar color
x ≤ 3500.0 orange red

3500.0 < x ≤ 5000.0 light orange
5000.0 < x ≤ 6000.0 yellow
6000.0 < x ≤ 7500.0 yellow white
7500.0 < x ≤ 11000.0 white
11000.0 < x ≤ 25000.0 blue white
25000.0 < x ≤ 100000.0 blue

100000.0 < x white
Table 12: Stellar color coding where x is the effective temperature (given in Kelvin).

Stellar mass Stellar color
≤ 0.45 orange red

0.45 < x ≤ 0.8 light orange
0.8 < x ≤ 1.04 yellow
1.04 < x ≤ 1.4 yellow white
1.4 < x ≤ 2.1 white
2.1 < x ≤ 16 blue white

16 < x blue
Table 13: Stellar color coding where x is the stellar mass (given in units of masses of the Sun).

Stellar mass Stellar size
0 < x ≤ 0.08 Tiny

0.08 < x ≤ 0.45 Very Small
0.45 < x ≤ 0.8 Small
0.8 < x ≤ 1.04 Medium Small
1.04 < x ≤ 1.4 Medium
1.4 < x ≤ 2.1 Large
2.1 < x ≤ 16 Giant

16 < x Massive
Table 14: Stellar mass descriptions where x is stellar mass (given in units of masses of the Sun)
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