
Latent Painter

Shih-Chieh Su
jessysu@gmail.com

Abstract

Latent diffusers revolutionized the generative AI and inspired creative art. When
denoising the latent, the predicted original image at each step collectively animates
the formation. However, the animation is limited by the denoising nature of the
diffuser, and only renders a sharpening process. This work presents Latent Painter,
which uses the latent as the canvas, and the diffuser predictions as the plan, to
generate painting animation. Latent Painter also transits one generated image to
another, which can happen between images from two different sets of checkpoints.

1 Introduction

Recently, denoising diffusers gain a lot of traction in generative AI, for its high quality outcome
without adversarial training [1], its efficiency [2, 3], content diversity with easy text conditioning [4],
and reasonable footprint [5]. Although the convenience of text-to-image largely spurs the creativity,
little has be studied about the composition of its generated art. This work presents Latent Painter,
which uses the existing diffuser to generate painting animation along with the output image.

2 Method

During the diffusion denoising, the latent is denoised step-by-step into the state representing an
image matching the text input. The predicted original image, which is the progressive estimate x̂0 of
the reverse diffusion process in [1], becomes sharper and sharper when the latent being denoised.
Collecting the predicted original images forms an animation about the sharpening process, where
information is updated omnipresently in the same frame. However, the update is uneven across
frames, with higher total pixel value change toward earlier frames. Latent painter prioritizes the
update locally to just like the brush strokes. Once the released information is close enough to match
the current predicted original, the residue is accumulated for later updates. This mechanism provides
update more evenly over frames.

3 Result

Sample outputs from the Latent Painter Strokes (Alg. 1, see Appendix A) are shown in Fig. 1. The
samples were first generated with stable diffusion [5] using a text sentence. The incurred latent series
of the predicted original images is fed into the painter to produce the strokes. From the bottom rows
of each block in Fig. 1, the denoising outputs quickly converge close to the final state in the first
couple iterations, each of which provides only one frame in the animation.

In contrast, the Latent Painter slows down the rapid update during early denoising iterations. This
prevents frames being updated too quickly, and helps rendering the new information more evenly over
frames. Here, the new information is released in the form of strokes. Each denoising iteration can be
released in tens to hundreds of strokes (frames). The stroke maps in the middle rows indicate the
regions with large information gap between the latest x̂0 update and current state, thus being stroked.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Figure 1: Stroke location of Latent Painter. Within each block, the bottom row shows the predicted
original images x̂0 after each of the first 12 denoising iterations, each with only one frame. The top
row shows the Latent Painter stroke snapshots, each containing 20-40 strokes (frames), during the
same period. The middle row are the corresponding accumulated stroke map, stacked over channels.
The animations are available at https://latentpainter.github.io/

4 Content Analysis

Figure 2: Stroke content of Latent Painter. Within each block, the rows show the cumulative stroke
output of channel 0, when it was chosen for the first three times as the target channel to stroke.

Some stroke samples from the Latent Painter are shown in Fig. 2. The snapshots each row only
accumulates the strokes from the same channel update, which starts from Eq. 2. Within the same
channel, the strokes tend to be congruent in color or style, or both. The channels of the latent space
are different from those at the visible layer, where the RGB channels each only account for a color.

5 Conclusion

Latent Painter is presented in this work. It turns existing latent diffuser output into painting actions
via evenly releasing the information update during the denoising iterations. Several extension beyond
the stroke algorithm has been covered. Since the latent space of the stable diffusion [5] has only four
channels, it is possible to investigate the VAE for further painting behaviors.

2

https://latentpainter.github.io/

6 Ethical Implications

With the depth in animation planning, the Latent Painter currently bears a unique signature to self-
categorize as a type of generated art. Self regulation is advised. The user should not submit the
outcome to anywhere that prohibits generated art.

References

[1] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840–6851, 2020.

[2] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

[3] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space
of diffusion-based generative models. Advances in Neural Information Processing Systems,
35:26565–26577, 2022.

[4] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical
text-conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

[5] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 10684–10695, 2022.

[6] Manuel Brack, Felix Friedrich, Dominik Hintersdorf, Lukas Struppek, Patrick Schramowski, and
Kristian Kersting. Sega: Instructing diffusion using semantic dimensions, 2023.

Appendix A Stroke Algorithm

Let Z(x, y, c) denote the state of the latent, having shape of width by height by channels, and can be
initiated as zeros. During each inference step t, the scheduler provides an updated denoised latent
sample Dt. The policy P decides whether the information difference between Z and Dt qualifies an
update and if so, which subset (C̄) of all latent channels C needs to be updated.

C̄ = P(Z,Dt), where C̄ ∈ C (1)

During a channel update, a channel c is chosen out of C̄. Then, a qualifying threshold θ picks the
region R to be stroked on.

R = {(x, y) : |Z(x, y, c)−Dt(x, y, c)| > θ} (2)

Let Gc(x, y) denote the information gain at the current channel c.

Gc(x, y) = |Zc(x, y)−Dt,c(x, y)| (3)

The first stroke is placed at the location whose neighborhood N (x, y) has the largest information
gain.

p(x̂, ŷ) = argmax
(x,y)

∑
(x′,y′)∈N (x,y)

Gc(x
′, y′) (4)

The whole neighborhood N (x, y), presented as the stroke of the Latent Painter, is then updated with
the current scheduler output.

Z(x, y, c) = Dt(x, y, c), for all (x, y) ∈ N (x̂, ŷ) (5)

The stroke-able region in Eq. 2 is then updated to exclude the newly stroke region. Following the
same procedure, the strokes are placed one by one until R being empty, or an early stopping criteria
E has been reached. Continue the stroke action in other channels in C̄ likewise.

Upon finishing all C̄ channels, the painter steps through another iteration t of the scheduler to get a
new Dt, then starts from Eq. 1 to get the channels to be painted this iteration. However, there could
be very little difference between the new Dt and current Z. This is particularly true toward the end
of the denoising process.

3

To ensure the animation frames having meaningful update, one idea is to release Dt more evenly
across strokes, each being presented in one frame. Therefore, P requires the total difference between
Z and Dt being larger than a portion of the largest total difference over all previous iterations. With
Dt sufficiently diverse from Z, P then provides the channels needing update and to be painted, as in
Eq. 1.

Note the current scheduler output Dt may not fully pass onto the latent Z at time t, when the early
stopping condition E exists. The un-updated residue is carried over to next scheduler output Dt+1.
The accumulated residue becomes the momentum for the next strokes.

Algorithm 1 Latent Painter - Strokes
Given policy P , stroke qualifier θ, stroke neighborhood N

Initialize painter state Z as zeros of the latent shape w × h× |C|
for t in diffuser schedule do

Compute Dt, the diffuser latent space prediction of x0 at current time t
Based on policy P , decides the channels to be updated C̄ = P(Z,Dt), where C̄ ∈ C
for c ∈ C̄ do

Compute the stroke region R = {(x, y) : |Z(x, y, c)−Dt(x, y, c)| > θ}
Initialize move cost M(x, y) as w × h of ones
while R not empty, as step s, do

Compute gain Gc(x, y) = |Zc(x, y)−Dt,c(x, y)| at channel c
Compute motivation V (x, y) = Gc(x, y) ·Mc(x, y)
Pick the stroke point p(x̂, ŷ) = argmax(x,y)

∑
(x′,y′)∈N (x,y) V (x′, y′)

Stroke to make Z(x, y, c) = Dt(x, y, c) for all (x, y) ∈ N (x̂, ŷ)
Update R← R \{(x, y) : (x, y) ∈ N (x̂, ŷ)}
Compute move cost M(x, y) as an inverse Gaussian filter centered (x̂, ŷ)

end while
end for

end for

Appendix B Move Cost

The human painter typically considers optimizing the effort in painting, such as to stroke the nearby
area first, and keep using the same brush and the same color as much as possible, before changing
or cleaning the brush. On the machine side, while the convolutional layers are trained to capture
congruent patterns, placing the strokes within the same channel allows more congruent patterns being
stroked.

The moving cost of the brush, denoted by Mc(x, y), is modeled as the inverse of a Gaussian kernel
centered at the current stroke location. Rather than the location with largest information gain, the
stroke is placed where having the largest motivation V , which is defined as the information gain
modulated by the moving cost,

V (x, y) = Gc(x, y) ·Mc(x, y) (6)

The motivation-based stroke method is presented in Alg. 1.

Appendix C Beyond Strokes

Besides the painting action in Alg. 1, there are other ways to leverage the differential response
between updates. The glow effect collects updates of the differential latent into the mass center,
where the update radiates concentrically.

In addition to the content-driven fashion, Latent Painter can also paint regardless of the differential
latent response. Some use cases including the flip effect that mimics page flipping and the fade
effect that release the update uniformly. The dissolve effect, however, can be either content-driven or
random. Some sample trails of the mentioned effects are visualized in Fig. 3 in the form of update
heatmap.

4

(a) glow

(b) dissolve vertical

(c) dissolve

(d) predicted original

Figure 3: Extensions from strokes. The glow effect is content-driven, while the dissolve effect here
isn’t. See https://latentpainter.github.io/ for animations and more examples.

Appendix D Image Transition

Existing image transiting animation is based on interpolating the seeded embeddings between the
source and the destination, or interpolating the latents, or both. However, it takes either more
memory or more time to denoise the interpolated embeddings. Latent Painter animates based on the
predicted original images from only two denoising trails, the source and the destination. With the
chosen painting effect, the update runs the source image denoising schedule backward, and then the
destination schedule forward. Through the constraints of the update release, the transition time can
be traded with the detail.

When the source and destination images share a certain part of background, such as in image editing,
the interpolated latents between the source latent and the destination latent can be used as the
prediction guidance. This avoids using the denoising schedules to guide, while it still requires the
denoised latents. Fig 4 illustrates the painting progress to transit the semantically edited images from
[6].

As an extra credit, Latent Painter can transit the generated images from two different sets of denoising
checkpoints, given the same VAE is used to decode the latent.

5

https://latentpainter.github.io/

Figure 4: Image to image transiting animation guided by the interpolated latents from [6]. Within
each block, the top row presents the stroke heatmap transiting one image to its semantically edited
variation, while the middle row presents the update heatmap of glow effect, both cumulative. The
bottom row shows the output status at the corresponding time points.

6

	Introduction
	Method
	Result
	Content Analysis
	Conclusion
	Ethical Implications
	Stroke Algorithm
	Move Cost
	Beyond Strokes
	Image Transition

