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Abstract

By treating dance as a long sequence of tokenized human motion data, we build a
system that can synthesize novel dance motions. We train a transformer architecture
on motion-captured data represented as a sequence of characters. By prompting the
model with different sequences or task tokens, we can generate motions conditioned
on the movement of a single joint, or the motion of a specific dance move.

1 Introduction

Dance is composed from a vocabulary of movements and poses in sequence. Language models
have been demonstrated as an effective method for learning representations of text [1/] and other
modalities [2H4]. A transformer language model is a natural choice to learn how to compose this
form of language.

The practice and understanding of dance can gain from access to a tool that can compose and condition
dance motions. In Section 2] we describe a method for the generation of movement conditioned
on the movement of subsets of joints, or gestures, which can indicate the trajectory or the target
movement quality of a complete movement. We condition these generations on the dancer performing
the movement, the genre, and the song it will be paired with.

Treating motion as a generic sequence of tokens is in contrast to existing work, which has mostly
focused on treating values in the sequence as continuous [5,|6]. The advantage of a discrete sequence
is training becomes identical to training on text with a cross-entropy loss function. We observe that
this allows us to avoid problems with “freezing” during generation. Unfortunately, the success of
this method is limited by dataset size because it lacks strong priors about motion, such as the laws of
physics [7]. The relative size of available motion datasets is compared in Table[I]to other modalities.

2 Methods

Motion data is typically a sequence of poses, each pose is a sequence of joint angles, typically the
24 canonical joints of the SMPL body model [8]. The largest publicly available dataset of human
motion is the AMASS [9] dataset.

Following the method described in Janner et al. [4], each dimension of each joint axis-angle vector
was binned uniformly. To simplify the task, we only include 13 of the original 24 joints. The resulting
integers are matched to arbitrary alphanumeric unicode characters so they can be used in a generic
text model as is. Each frame is represented by a “word” with a space placed between frames.

A causal language model with 26 million parameters was pre-trained for 7500 iterations on the
AMASS dataset processed with the data splits defined in [12], and the AIST++ [13]] dataset. The
model was finetuned on the AIST++ dataset with conditioning tokens based on the motion descriptions
as illustrated in Figure[I]
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Table 1: Comparison of relative information content of datasets. Size is reported in bits per token for
generative models trained on each dataset. The reported bits/frame was trained on all joints rather
than the subset used elsewhere in this paper.

Name Description Size (bits)

ImageNet Image Database 179G (3.57 bits/pixel) [10]
The Pile Text Database 837G (2.45 bits/token) [[L1]]
AMASS Motion Database 1.6G (186 bits/frame)
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Figure 1: Illustration of how the transformer operates on an example of text with conditioning tokens
prepended to the sequence. Masked tokens are denoted with “M”, the causal model moves from left
to right inferring masked tokens.

The pretrained model was trained to 115 bits/frame, and after finetuning on the AIST++ dataset
reached 85 bits/frame, while incurring an absolute quantization error that was not noticeable.

3 Dance Generation

Motions are generated using any number and combination of joint
inputs as context for the model, as shown in Figure[2] Generated
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Conditioning dance generation on a select set of joints allows us joints used as context for the
to generate long dance sequences that maintain a certain coherence model, and the generated out-
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4 Conclusion

This work provides a foundation for learning human movement from data using the tools of language
modeling, providing an interface between these areas of research and enabling exciting new directions
in both understanding and composing dance with the help of machine learning.


https://drive.google.com/file/d/10g_zXk9_zZTZ1B0QDqyLylfTq43KiH8Y
https://drive.google.com/file/d/10g_zXk9_zZTZ1B0QDqyLylfTq43KiH8Y
https://drive.google.com/drive/folders/1Zer3c4jU17HXJNA0_fvwyqg7HNZfVmW6?usp=sharing
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Ethical Implications

There is some small risk this could be used analogous to deepfakes [[14] by prompt tuning a condi-
tioning token to a sample from someone’s movement. Similarly, the model could be used to generate
motion that appears violent or otherwise disturbing.
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