Towards Real-Time Text2Video via CLIP-Guided,
Pixel-Level Optimization

Peter Schaldenbrand* Zhixuan Liu* Jean Oh*

Abstract

We introduce an approach to generating videos based on a series of given lan-
guage descriptions. Frames of the video are generated sequentially and opti-
mized by guidance from the CLIP image-text encoder; iterating through lan-
guage descriptions, weighting the current description higher than others. As
opposed to optimizing through an image generator model itself, which tends to
be computationally heavy, the proposed approach computes the CLIP loss di-
rectly at the pixel level, achieving general content at a speed suitable for near
real-time systems. The approach can generate videos in up to 720p resolution,
variable frame-rates, and arbitrary aspect ratios at a rate of 1-2 frames per sec-
ond. Please visit our website to view videos and access our open-source code:
https://pschaldenbrand.github.io/text2video/|
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Figure 1: Frames sampled from videos generated by our approach produced with a series of language
descriptions expressing narratives.

Introduction Animation is a compelling medium allowing unlimited degrees of visual expression
while requiring its creator both the artistic skills and a tremendous amount of time to produce an
artifact. Many people do not have the time and resources to learn animation software or create by
hand; however, most can describe the visual elements of a story with words. To bridge this gap, we
introduce a method for generating animated videos using natural language input.

Existing CLIP-Guided Text2Video and Text2Image approaches utilize pretrained image generator
models, such as Diffusion. Using a pretrained image generator model ensures that the output will
appear in distribution to the generator’s training data. While this can produce highly-realistic imagery,
it constrains the variety of producible content. Optimizing through large generator models is also
time consuming. A single frame of video generated with Disco Diffusion [1]] takes on the order of 5
minutes, 17 seconds for animation adaptations of Stable Diffusion [7], and 1 minute for CogVideo
[4] while our model-free approach generates 1-2 frames per second.

Approach To achieve real-time text2video generation, we propose a two-step approach; (1) quickly
and noisily generating semantic content, then (2) refining image textures in a post-processing step.
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Figure 2: Samples from 60 frame videos generated using two text prompts, each in ~ 100 seconds.
“A dog leaping through the night sky"
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To generate the semantic content, we alter the pixels of the video frame directly to decrease the
difference between the frame and the text prompts. We generate each frame sequentially while
iterating through given text prompts to guide the content. The first frame is initialized with uniformly
distributed noise. We draw on past CLIP-Guided techniques [2}[8] 3} 9] to compare the frame and the
language description: the augmented frames and the text prompt are encoded using CLIP [6] (E)
and compared using cosine distance (Eq. [T)). For the first frame, only the first prompt is used, and
for subsequent frames, a linearly interpolated weight determines how much each prompt influences
the generated frame. The initial state of each frame past the first is the prior frame plus some noise.
Using the prior frame encourages frame to frame consistency of the locations of the content, while
adding noise ensures that the frames do not get stuck in local minima and some modifications are
made between frames. An extra measure to ensure the frames do not change too drastically is adding
a video stability loss (Eq. [2)) with a small amount of weight.

Our objective function (Eq. [3)) encourages semantic content generation but does not influence the
appearance or texture producing images that are very noisy in appearance. We train CycleGAN [10]
to denoise these images, training the model to translate from noisy video frames to photographs [3].
Fig. 3] shows examples of the translation. The frames processed with CycleGAN do not appear
photographic, but are smoother and have more realistic colors.

A user can specify the number of frames for each text prompt they give. A temperature parameter
controls strength of the video stability loss (Eq.[2) and the amount of noise to add between frames.

Results We demonstrate that our approach can generate images of general concepts in different config-
urations/combinations as shown in Fig. 2] with more results at: https://pschaldenbrand.github!
io/text2video/l Empirically, our approach is 20-300 times faster than existing approaches [1} 7, 4].

Discussions The appearance of the videos can be noisy and bizarre and is currently beyond user
control. In future work, we intend to add priors to ensure smoother motion in the videos and more
user control over the appearance and style of the videos.

Ethical Considerations Visual content generation is controlled by CLIP [6] in this approach. CLIP
is known to carry over biases from its training data which reflect many wrong and harmful ideals.
It is important that the user of this work understands the biases and tendencies of CLIP. It is also
important that users do not use this work to create misinformation or harmful content.
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A Temperature Parameter

We explored the effects of the temperature parameter (Fig. [). Temperature is a value between 0
and 100 that users specify to control how much frame-to-frame differences should be encouraged.
Temperature controls the weight of the video stability loss (w. in Eq.[2) and the standard deviation
of the noise added to frames when initializing the subsequent frame with the previous. The exact
relationship between temperature and these parameters was hand written based on observations of
the effects of the parameters. Objects and settings with low temperature barely move frame-to-frame,
while with high temperature the scene completely changes (Fig. f).

B Resolution and Aspect Ratio

A user specifies the resolution of the generated video a priori. CLIP requires 224 x 224 resolution
input images, however, with the augmentation step, video frames can be cropped and resized to
fulfill this requirement. Our approach operates with arbitrary resolutions, but the resolution does
impact both the content and the appearance of the generated video frames. Lower resolutions produce
simpler and smoother video frames, while a high resolutions are noisy, sparse, and do not align to
the text prompt as well as medium resolutions (Fig.[d)). To investigate our post-processing model’s
involvement in the altering of the appearance of generated frames at different resolutions, we resized
the same image to multiple resolutions prior to post-processing (Fig.[6). At low resolutions, our post
processing model, CycleGAN, smooths the images greatly but has little effect at denoising with high
resolutions.
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Figure 4: Sampling 6 (out of 60) frames from generated videos using two input text prompts and
varying the temperature parameter.
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Figure 5: Generating video frames with varying resolutions. The vertical pixel resolution is shown
above each generated frame with the post-processed frame displayed above the pixels that were
directly optimized. The language prompts used: (top) “A cat swimming in the ocean" and (bottom)
“A koala playing the piano on mars".

Figure 6: A video frame with a vertical height of 256 pixels was generated with the language
description “Albert Einstein dancing in the club". The image, prior to post-processing with CycleGAN,
was scaled to different resolutions to investigate CycleGAN’s denoising abilities on different sized
images.
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