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Abstract

The recent advances in text and image synthesis show a great promise for the
future of generative models in creative fields. However, a less explored area is the
one of 3D model generation, with a lot of potential applications to game design,
video production, and physical product design. In our paper, we present 3DGEN, a
model that leverages the recent work on both Neural Radiance Fields for object
reconstruction and GAN-based image generation. We show that the proposed
architecture can generate plausible meshes for objects of the same category as
the training images and compare the resulting meshes with the state-of-the-art
baselines, leading to visible uplifts in generation quality.

1 Introduction

Generative models such as StableDiffusion (Rombach et al., 2022) or DALLE2 (Ramesh et al., 2022)
are rapidly changing the boundaries of machine-assisted creativity, especially in the case of image
synthesis. Researchers and practitioners are inventing new ways to create and remix art, either by
text-conditioned image generation, image inpainting or outpainting, full video generation. In the
same time, the class of Neural Radiance Fields models (NeRF, Mildenhall et al., 2021) are making
rapid advances in photorealistic 3D model/scene reconstruction from partial views. NeRF uses an
implicit volumetric representation to represent 3D scenes, making it possible to render them at an
arbitrary resolution with low memory costs.

Some of the existing work, such as Generative Radiance Fields (GRAF, Schwarz et al., 2020), has
been starting to bridge the gap between reconstruction and generation. GRAF can generate new
volumetric models from a set of views of similar objects. However, a major limitation of the GRAF
model is that this volumetric representation is not adapted to produce plausible object meshes, and is
therefore not a good match for 3D-native creative environments such as game design, virtual-reality
(VR) world design, animation. On the other hand, UNISURF (Oechsle et al., 2021) showed that
radiance fields and implicit surface representations can be unified, and proposed a joint optimization
task that both improves NERF and allows to extract 3D meshes.

In this paper, we propose a potential solution for the shortcomings of GRAF, which we name 3DGEN.
This solution builds on both GRAF (Schwarz et al., 2020) and UNISURF (Oechsle et al., 2021), and
can generate volumetric objects with a corresponding implicit surface, hence making them easily
exportable to 3D meshes. In Figure 2, we showcase one potential way to control the object generation:
the interpolation in the latent space between two existing object meshes leads to a set of plausible
object meshes of the same type (in this case cars and chairs).
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Figure 1: Left: 3DGEN with cars and chairs. Right: disentanglement of shape and appearance.

Figure 2: Latent space interpolation and the corresponding mesh extraction.

2 Our approach

We begin by introducing a conditional version of UNISURF gθ which encodes an object conditionally
to a shape code and an appearance code, in a disentangled manner. Similarly to GRAF (Schwarz
et al., 2020), we construct a generator Gθ (sharing parameters with gθ) by stacking (i) a module
that casts rays, (ii) gθ that conditionally computes the emitted radiance and occupancy probabilities
along the casted rays, and (iii) a differentiable volumetric renderer to produce the output images
(Mildenhall et al., 2021). We introduce the discriminator Dϕ, a convolutionnal neural network.

We train this setup with the non-saturating GAN objective (Goodfellow et al., 2014) with R1-
regularization (Mescheder et al., 2018), to which a smoothing term for the implicit surface is added
(Oechsle et al., 2021) (more details on each term can be found in Appendix):

min
θ

max
ϕ

(
Ladv(θ, ϕ)− λR1(ϕ) + γLsmooth(θ)

)
(1)

Implementation details and surface extraction. Our model is initialized such that the initial
implicit surfaces are spheres (Oechsle et al. (2021), Gropp et al. (2020)). As the training progresses,
the points are sampled along rays within a narrowing interval centered around the first intersection
with the implicit surface (Oechsle et al., 2021). By doing so, in the early stages of the training, the
formulation is similar to GRAF, while in the later stages of the training, points are sampled close to
the implicit surface. It is therefore possible to extract a well defined surface with the Marching Cube
algorithm (Lorensen and Cline, 1987).

Experiments. We test our model on (i) a dataset of cars rendered from The Carla Driving simulator
(Dosovitskiy et al., 2017) and (ii) a dataset of chairs, rendered from Photoshapes (Park et al., 2018).
Figure 1 shows the generated cars and chairs, as well as disentanglement of shape and appearance.
Figure 2 shows latent space interpolation and the exportation to meshes. In the Appendix, 3D-GEN
is compared to the baseline GRAF for camera poses interpolations in Figure 3 and meshes extraction
in Figure 4. To evaluate both methods, we report the Frechet Inception Distance (FID, Heusel et al.,
2017). GRAF / Ours: 71/97 (Cars); 48/126 (Chairs).

3 Conclusion and future work

This work present 3D-GEN, a generative model that unifies radiance fields and implicit surfaces. The
model can learn an underlying distribution of radiance fields and surfaces from a dataset composed
only of 2D images of objects of a similar class, and therefore generate new objects from this class.
During inference, the model can both render views from any angle and easily export to a mesh based
representation, which makes it applicable to 3D content creation. In our future work we intend to
further improve the quality of the generated objects by reducing artefacts in the shapes and producing
more diverse outputs and to compare it with the recent GET3D model proposed in Gao et al. (2022).
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4 Appendix

4.1 Background

This section summarizes the mathematical formalism required for our proposed model 3DGEN.

Neural Radiance Field (Mildenhall et al., 2021). Neural radiance fields are neural networks
parameterized by θ ∈ Θ mapping a spatial location x ∈ R3 and a viewing direction d ∈ R3 to a
view-dependant radiance cθ(x,d) and a volumetric opacity σθ(x):

fθ : x,d −→ cθ(x,d), σθ(x) (2)

Differentiable volume rendering. Given the camera origin o ∈ R3 and a viewing direction d, we
can shot a ray r = {o+ td|t ∈ R+} through the radiance field. Given N points {xi} sampled along
this ray, differentiable volume rendering approximates the perceived color of the ray as follows:

Ĉ(r) =

N∑
i=1

Tiαicθ(xi,d) (3)

αi = 1− exp(−σθ(xi)δi)) (4)

Ti =
∏
j<i

(1− αi) (5)

where Ti is the accumulated transmittance along the ray r and δi = ||xi+1 − xi||2 is the distance
between two adjacent points.

UNISURF (Oechsle et al., 2021). Assuming solid non-transparent objects, i.e. σθ(xi) ∈ {0,+∞},
αi can be reinterpreted as the occupancy probability at position xi from equation 4.

We can therefore derive an implicit surface Sθ:

Sθ = {x ∈ R3|αθ(x) = 0.5} (6)

A regularization loss Lsmooth on the implicit surface is introduced:

Lsmooth(θ) =
∑

xs∈Sθ

∥nθ (xs)− nθ (xs + ϵ)∥2 (7)

Here ϵ is a small perturbation and n(xs) denotes the surface normal at position xs. The surface
normal can be computed using the formula:

nθ(xs) =
∇αθ(xs)

∥∇αθ(xs)∥2
(8)

GRAF (Schwarz et al., 2020). Built upon the original NeRF formulation, a conditional neural
radiance field (cNeRF) generates radiance fields conditionally to an appearance code za and a shape
code zs:

gθ : x,d, zs, za −→ cθ(x,d, zs, za), σθ(x, zs) (9)

The generator Gθ is composed of three modules:

(i) a module that sample the camera parameters ξ and subsequently cast K ×K rays

(ii) a cNeRF gθ to conditionally compute radiances and volumetric opacities along the sampled
rays

(iii) a volume renderer to produce the output image
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To train the discriminator Dϕ and the generator Gθ, the adversarial loss Ladv(θ, ϕ) and the regulariza-
tion term R1(ϕ) are introduced:

Ladv(θ, ϕ) = EI∼pdata ,ν∼ppatch

[
f (−Dϕ(Γ(I,ν)))

]
+ Ezs,za∼platent ,ξ∼pcam,ν∼ppatch

[
f (Dϕ(Gθ(zs, za, ξ,ν)))

]
(10)

R1(ϕ) = EI∼pdata ,ν∼ppatch

[∣∣∣∣∇Dϕ (Γ(I,ν))
∣∣∣∣2
2

]
(11)

with f(x) = − log(1 + exp(−x)). Here, ν denotes denotes the patching strategy and Γ the patching
operator to transform the training images into K × K patches. Note that during inference, the
generator Gθ can be used to generate images at any resolution. The patch constraint only holds during
training, to make this setup trainable in practice. For more details, we refer the reader to Schwarz
et al. (2020).

4.2 Experimental comparison between 3DGEN and GRAF

Figure 3: Camera poses interpolations on both Cars and Chairs: varying rotation (up), varying
elevation (down). 3D-GEN (left) and GRAF (right).

Figure 4: Extracting surface meshes from GRAF at level set σ ∈ {1, 10, 50, 100} (left) and from
3D-GEN (right).
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