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Abstract

The impressive capacity shown by recent text-to-image diffusion models to generate
high-quality pictures from textual input prompts has leveraged the debate about the
very definition of art. Nonetheless, these models have been trained using text data
collected from content-based labelling protocols that focus on describing the items
and actions in an image, but neglect any subjective appraisal. Consequently, these
automatic systems need rigorous descriptions of the elements and the pictorial style
of the image to be generated, otherwise failing to deliver. As potential indicators
of the actual artistic capabilities of current generative models we characterise
the sentimentality, objectiveness and degree of abstraction of publicly available
text data used to train current text-to-image diffusion models. Considering the
sharp difference observed between their language style and that typically employed
in artistic contexts, we suggest generative models should incorporate additional
sources of subjective information in their training in order to overcome (or at least
to alleviate) some of their current limitations, thus effectively unleashing a truly
artistic and creative generation.

1 The importance of figurative speech in art

Deep Generative Models (DGM) have become a particularly hot research topic within the field
of machine learning [22]]. DGMs are neural networks with thousands of parameters trained to
approximate probability distributions from the observation of a large number of samples, after which
they can be used to create new instances that resemble the training data. Their popularity has been
steadily increasing in the last years, reaching the public sphere due to the success of autoregressive
models [31}[35], Variational AutoEncoders (VAEs) [[15,16] and Generative Adversarial Networks
(GANSs) [[L1]]. However, to condition the generation process towards more elaborate image semantics
has been a long-standing problem [12} (8, 20, 27} [23]]. With the advent of Large Language Models
(LLMs) [25015] and CLIP [24], diffusion models can now be conditioned by textual prompts in natural
language [13]]. Still, some of the most popular ones such as DALL-E2 [26], Stable Diffusion [28]] and
Imagen [30] need these prompts to describe as exactly as possible both the items and the pictorial
style of the image to generate.

It is not a minor issue, given how tightly bounded human communication and art are. Even in
indigenous cultures [4], art is used to hand information about the feelings, ideas and perception of the
artist to an audience, arousing emotions along the process [34} [19]. People often describe artworks in
terms associated with emotional states [[7]], and as some theorists of art have noted, the exact content
of a visual artwork is neither arbitrary nor unimportant, but perfectly aligned with the abstract theme
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Figure 1: Distributions of average sentence concreteness score in each dataset. The color flips
represent the shape of the distribution whereas the black box inside denotes the mean value and
standard deviation of the distribution.

the artist seeks to communicate [2]]. Furthermore, the elements in an artwork do not even need to
be realistic to achieve its goal [3]]. We argue current text-to-image generative models are ignoring
this fundamental aspect of the human creative process, hence failing to deliver when the prompts
conditioning the generation process of the model is not strictly descriptive (Appendix [A).

2 Experimental setup and results

Our main argument is that text-to-image generative models are being trained on databases originally
created to different purposes like image segmentation, hence limiting the way they interpret human
language in the specific context of art generation. SemArt [10] and Artemis [[1] are examples of
datasets specifically aimed at understanding the role played by language in the description of artworks,
thus paramount instances of the idiosyncrasy of the language used in artistic contexts. Similarly,
incorporating to our study the descriptions of the challenges contained in the AVA dataset [21], we
gain insight into how people ask for new pieces of art (in this case, photography contests). Opposed
to them, MS-COCO [17], Conceptual Captions [33]], Captions12M [9]] and Laion-Aesthetics [32]]
are publicly available databases that constitute part of the training material used in text-to-image
diffusion models whose language is essentially content-based and aimed to a neutral description
of the scene. We qualitatively describe the sentiment valence [14], subjectivity [18] and average
term concreteness [[6] (the inverse of term abstraction) of image captions following the procedure
introduced in [1]].

The most obvious difference can be seen in the average term concreteness per sentence, shown
in Figure Apparently, datasets focused on art display more abstract vocabulary. When we
consider their average sentiment valence, they also seem to be shifted towards positive emotions
(& = 0.27,02 = 0.45) while content-based data is fundamentally neutral (1 = 0.1,02 = 0.27).
Likewise, Artemis, SemArt and AVA present on average a greater ratio of subjective terms (u =
0.41, 02 = 0.27) than the rest of datasets (1 = 0.22, 02 = 0.28). We also compute the Earth-Moving
Distance between each pair of datasets [[29], finding that there are in fact two types of language styles,
namely that related to art environments and that of content-based, neutral and objective descriptions
(we refer the reader to Appendix [B] for further detail).
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3 Ethical considerations

The automatic generation of content, be it text, audio or image is now in the middle of a heated
debate that may remind us of that happening decades ago when the massive adoption of photography
was followed by the discussion about whether it could be considered an artistic expression [36]].
Contrarily to cameras, the black-box nature of DGMs makes particularly challenging - although no
less important - to understand the impact of the training material of the model on the final outcome to
ensure fairness and prevent negative biases. We hope our work contributes to the demystification of
these generative models while planting the seed for future work on their interpretability.
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Prompt: “Show me a beginning.”
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Figure 2: The prompt is deliberately open to interpretation, but these systems do not seem to have
captured the underlying abstraction of the term "beginning".
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A Instances of prompts from AVA

Here we present some instances that we believe showcase one of the current strongest limitations of
DGMs: their dependence on objective, fine-grained descriptions of the image in order to generate
high-quality, semantically-similar images. To illustrate this limitation, we feed the model with
prompts taken from the instructions given by the organisers of photographic contests at https:
//www.dpchallenge.com to participants, and compare the outcome of some popular diffusion
models against human submissions. As it can be seen from Figure[2and Figure [3| humans naturally
understand figurative speech and creatively interpret the prompt in different ways. Diffusion models
seem to struggle to go beyond the literal meaning.

B Wasserstein distance between datasets

We chose the Wasserstein distance to provide an intuition about how much it would require to convert
one distribution into another, and compute it for each pair of datasets in the three variables considered


https://www.dpchallenge.com
https://www.dpchallenge.com

Prompt: “Like a hammer and nails, the world is full of things that just
seem to a couple and go well together. Creatively compose and then
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photograph two things that “go together”.

Stable Diffusion

DALL-E mini

DALL-E2

Human
Submissions

Figure 3: In this case the prompt suggests an example that participants can take figuratively to come
up with new ideas, but instead diffusion models apparently understand only the literal meaning.

(sentimentality, subjectiveness and concreteness), as show in Table [T} The Wasserstein distance
between two distributions u and v can be computed as:

Wi(u,v) =  inf / |z — yldm(x,y) (1)
TEl(u,v) JRxR

where I is the set of (probability) distributions on R x R whose marginals are u« and v on the first
and second factors respectively.

We find that the average distance to shift from any distribution to another within datasets related
to art is smaller (u(W7) = 2.71e™3, 02(W;) = 0.6e?) than that required to transform it into
either MS-COCO, Conceptual Captions, Captions12M or Laion-Aesthetics. An analogous effect is
observed within these datasets (u(W1) = 3.16e 3, o2(W;) = 1.38¢73).



I | Artemis  SemArt MS-COCO Conc. Caps. Captions12M  Laion-Aesth.

AVA 3.53e-3  2.34e-3 9.51e-3 6.08e-3 4.24e-3 7.41e-3
= Artemis - 2.25e-3 1.23e-2 9.15e-3 7.12e-3 1.04e-2
= SemArt - 1.17e-2 8.09e-2 6.14e-3 9.4e-3
=i MS-COCO - 3.7e-3 5.76e-3 2.6le-3
& || Conc. Caps. - 2.23e-3 1.37e-3

Captions12M - 3.3e-3
o AVA 1.9e-3  4.55e-3 5.25e-3 5.49¢-3 3.73e-3 6.98e-3
=z Artemis - 4.1e-3 6.29¢-3 6.76e-3 4.77e-3 8.24e-3
B SemArt - 8.83e-3 8.78e-3 6.79%-3 9.78e-3
& | MS-COCOo - 1.17e-3 2.48e-3 2.43e-3
& Conc. Caps. - 2.25e-3 1.55e-3

Captions12M - 3.47e-3
2 AVA 1.46e-3  1.46e-3 4.00e-3 3.69¢-3 3.90e-3 5.8e-3
Q Artemis - 1.09e-3 3.69¢e-3 3.13e-3 3.35e-3 5.55e-3
2 SemArt - 2.76e-3 2.45e-3 2.62e-3 4.55e-3
‘g MS-COCO - 8.37e-4 1.02e-3 1.99e-3
S Conc. Caps. - 4.95e-4 2.43e-3

Captions12M - 2.27e-3

Table 1: Wasserstein distance (W) computed between each pair of datasets and language property
considered in the study.
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