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Abstract

Diffusion models have shown great results in image generation and in image
editing. However, current approaches are limited to low resolutions due to the
computational cost of training diffusion models for high-resolution generation. We
propose an approach that uses a pre-trained low-resolution diffusion model to edit
images in the megapixel range. We first use Blended Diffusion to edit the image at
a low resolution, and then upscale it in multiple stages, using a super-resolution
model and Blended Diffusion. Using our approach, we achieve higher visual
fidelity than by only applying off the shelf super-resolution methods to the output
of the diffusion model. We also obtain better global consistency than directly using
the diffusion model at a higher resolution.

Figure 1: Our approach performs high-resolution text-guided image editing in multiple stages. In
the first stage a), we apply Blended Diffusion [2], given a masked region and a text prompt. In each
following stage b), we first upscale the image using an off the shelf super-resolution model and then
use Blended Diffusion, starting at an intermediate diffusion step, to improve the image quality and
ensure consistency with the input prompt. c) When the output resolution of a stage is too large to
fit into the GPU memory, we split the image into multiple segments, apply upscaling and Blended
Diffusion to them separately and alpha-composite the results.

Introduction Over the last year, along with great advances in text-guided image generation [13, 17],
text-guided image editing approaches have been proposed with impressive results [2, 10]. Avrahami et
al. [2] published a method called Blended Diffusion, which allows us to reuse pre-trained text-guided
diffusion models to edit images given a masked region and a text prompt. However, as training large
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diffusion models is computationally expensive, publicly available models are limited to resolutions
of at most 512x512 pixels. Directly applying these models to higher resolutions leads to incoherent
results, with repeated patterns and elements. To overcome this issue, we propose a multi-stage
approach that, by first editing the image at a low resolution and then upscaling the image in multiple
stages, is able to edit large areas coherently at a high resolution.

Approach As illustrated in Fig. 1, we begin by cropping the image to a square area around the
masked region and downscale this region to match the training resolution of the diffusion model.
In the first stage (Fig. 1a), we use Blended Latent Diffusion [2] to obtain a batch of five edited
outputs. We found it crucial to utilize Repaint [8] together with Blended Diffusion here, leading
to a significantly higher consistency between the masked and unmasked region. From the batch of
results we select the best sample by similarity to the prompt using CLIP [12], following related work
[1, 14]. We then perform one or more intermediate stages (Fig. 1b) of upscaling using Real-ESRGAN
[19] followed by Blended Diffusion. We first take a forward step in the diffusion process to an
intermediate timestep [9] and then denoise with Blended Diffusion. As background input for Blended
Diffusion, we found it helpful to not just add the same amount of noise as to the masked region, but
also to first low-pass filter the masked region to match the spatial resolution of the edited region.
Without this preprocessing, the diffusion process tends to blur the region we are editing, as we show
in the Appendix A.4. When the output resolution of a stage is too large (Fig. 1c), we divide the image
into a grid of overlapping regions, processing each region separately. We then use alpha compositing
[11] to recombine the processed segments. We also found performing decoder optimization [1] after
each stage to significantly improve the blending between the edited region and the background.

Evaluation We implement our approach based on the latent diffusion implementation provided
by Rombach et al. [16] and use Stable Diffusion v1.4 [16]. In Fig. 2, we compare our approach to
two baselines: First, we directly apply Blended Diffusion [2] to the highest resolution we can fit
in 32GB of VRAM, 960x960 pixels, and bilinearly upscale to the original resolution. Due to the
resolution being higher than in training, the image is not globally consistent with multiple heads
being generated. As a second baseline, we use the editing function of the Dall-E 2 [13] Web UI to
paint in the masked region. As the Dall-E 2 model is limited to 1024x1024 pixels, we need to edit the
image in six separate segments, leading to poor consistency between parts of the image. Two statues
have been generated, one of which is floating above the other. Finally, using our approach, we are
able to produce a high-resolution result that is globally consistent.

We provide a discussion of the background and related work in the Appendix, as well as additional
sample images, implementation details, ablations, and attribution of the used images. Our source code
is available at https://github.com/pfnet-research/multi-stage-blended-diffusion.

Figure 2: Comparison of our approach to two baselines for the prompt “Statue of Roman Emperor,
Canon 5D Mark 3, 35mm, flickr”. From left to right: Blended Diffusion applied to 960x960 pixels
followed by bilinear upscaling, Dall-E 2 editing in multiple segments, our proposed approach. The
size of the mask is 1166x2297 pixels. Applying Blended Diffusion directly to the higher resolution
leads to incoherent generation with repeated elements. Similarly, Dall-E 2 generates two statues, with
one floating above the other. Our approach is able to generate a detailed, coherent image.

2

https://github.com/pfnet-research/multi-stage-blended-diffusion


Ethical Impact Image editing, as well as image generation, can have significant ethical implications.
While they can be used for many positive uses, for example for concept art generation, general image
retouching or entertainment, they can also be used by malicious actors to fabricate images to pass off
as real. However, at the current state it is possible with closer inspection to tell which images are
edited. Another issue is that the pretrained model we use in our approach, Stable Diffusion v1.4 [16],
was trained on the LAION dataset, which is known to have significant biases with regard to ethnicity
and gender. See Birhane et al. [3] for an investigation of this issue.
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A Appendix

A.1 Background

Diffusion models [5] are a class of generative models, which define a forward process q(xt|xt−1)
that adds noise to a given sample, such that the marginal distribution at timestep t = T is a
symmetric Gaussian distribution p(xT ) = N (xT ; 0; I) and the marginal distribution at timestep
t = 0 is the data distribution that we aim to learn p(x0) = pD(x0). To generate samples from the
data distribution, Denoising Diffusion Probabilistic Model (DDPM) [5] learn the reverse process
pθ(xt−1|xt), which allows a sample to be generated by sampling xT ∼ N (0; I) and iteratively
denoising it with pθ(xt−1|xt). As the number of timesteps is usually large (T ≈ 1000), each
step requiring one forward pass of the network parametrizing pθ, both training and inference are
computationally expensive. Latent diffusion models (LDMs) [16] speed up training and sampling
by splitting their approach into two stages: First, they train a variational autoencoder (VAE) with
decoder Dθ and encoder Eθ to obtain a lower dimensional representation of the input images. In the
second stage, they define the forward process in the latent space and train a DDPM model for the
reverse process.

Blended Diffusion [2] provides a way to edit images with text-guided diffusion models. Given a
mask m, an input image xin and text conditioning c, they alter the sampling process by combining
the intermediate result xt with a noised version x̂t of the input after each denosing step: xt ←
m⊙ xt + (1−m)⊙ x̂t. x̂t here is a sample of the forward diffusion process at time step t, starting
from xin; x̂t ∼ q(xt|x0 = xin). In a subsequent work, Avrahami et al. [1] apply Blended Diffusion
to LDMs. They show that directly applying Blended Diffusion leads to poor blending with the
original image due to the lossy encoding of the VAE. To address this issue, they propose to optimize
the weights of the VAE decoder for each edited image to minimize the following loss

LDO = ||m⊙ (xout −Dθ(zout))||22 + λ||(1−m)⊙ (xin −Dθ(zout))||22 , (1)

where zout is the result of the editing in latent space, xout = Dθ(zout) is the result in pixel space
when using the original decoder weights, xin is the input image, and λ weights the two loss terms. In
other words, this loss optimizes the unmasked area to be the similar to the unedited image and the
masked area to be similar to the edited image.

SDEdit [9] is a method that allows unconditional or text-conditional diffusion models to be utilized as
image-to-image models, projecting an input image xin onto the data distribution pD that a diffusion
model pθ was trained on. To do so, they sample from the forward diffusion process at time T ′ < T ,
using xin as sample at time t = 0, obtaining xT ′ ∼ q(xT ′ |x0 = xin). They then use the trained
diffusion model pθ(xt−1|xt) to sample from the reverse process starting with xT ′ , obtaining the
result at t = 0.

Repaint [8] is a method that utilizes unconditional diffusion models for inpainting. Starting from
Gaussian noise at t = T , similar to Blended Diffusion [2], after every denoising step they replace
the unmasked area with a noised version of the input image. However, instead of sampling from the
reverse process by going from step t = T to t = 0 linearly, they repeat each denoising step R times,
by taking forward and backward steps in the diffusion process iteratively. While this increases the
runtime, they show that it also significantly increases the quality of the inpainting result.

A.2 Implementation Details

See Figure 3 for a detailed diagram of our approach, with outputs of all intermediate processing steps
being shown, and Algorithm 1 for an algorithm showing our approach.

We build our implementation based on the latent diffusion model (LDM) implementation by Rombach
et al. [16] and use Stable Diffusion v1.4 [16] for our experiments. However, our approach is also
applicable to pixel-space diffusion models. As outlined in the main text, given an input image xin, a
mask m, and a text conditioning c, we begin by cropping the image to a square region around the
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Figure 3: Our approach, with all intermediate results being shown. Best viewed zoomed in.
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Algorithm 1: Multi-Stage Blended Diffusion
Input : input image xin, mask m, text prompt c, DDPM pθ, forward process q, super-resolution

model SR, low-pass filter LP, stage count ns, stage-wise start timestep T ′
s, repaint step R,

first stage batch size B
1 x̃← Downsample(Crop(xin,m))
2 X 1 ← ∅
3 for i ∈ [1, . . . B] do
4 xT ∼ q(xT |x0 = x̃)
5 for t ∈ [T, . . . , 0] do // First stage, Blended Diffusion with Repaint
6 xt−1 ∼ pθ(xt−1|xt, c)
7 x̂ ∼ q(xt−1|x0 = x̃)
8 xt−1 ← m⊙ xt−1 + (1−m)⊙ x̂
9 for r ∈ [1, . . . , R] do

10 xt ∼ q(xt|xt−1 = xt−1)
11 xt−1 ∼ pθ(xt−1|xt, c)
12 xt−1 ← m⊙ xt−1 + (1−m)⊙ x̂
13 end
14 end
15 X 1 ← X 1 ∪ x0

16 end
17 x1 ← ClipReranking(X 1, c)
18 x1 ← DecoderOptimization(x1, xin, pθ)
19 for s ∈ [2, . . . , ns − 1] do // Intermediate stages, Blended Diffusion without Repaint
20 x̃← m⊙ SR(xs−1) + (1−m)⊙ LP(xin)
21 xT ′

s
∼ q(xT ′

s
|x0 = x̃)

22 for t ∈ [T ′
s, . . . , 0] do

23 xt−1 ∼ pθ(xt−1|xt, c)
24 x̂ ∼ q(xt−1|x0 = x̃)
25 xt−1 ← m⊙ xt−1 + (1−m)⊙ x̂
26 end
27 xs ← DecoderOptimization(x0, xin, pθ)
28 end

// Final stage processed in segments, omitted for brevity, see Fig. 3
29 xout ← m⊙ xns + (1−m)⊙ xin

mask. Because the diffusion model only receives the selected area as input, it is important that this
area includes the context necessary for consistent inpainting. We, therefore, set a margin around
the masked region for each example which ensures the necessary context is included. This area is
then downsampled to the resolution the LDM was originally trained on. In the first stage, we use a
combination of Blended Diffusion [2] and Repaint [8], as shown in lines 4-14 of Algorithm 1. We
generate a batch of B images and select the best one by similarity to the prompt using CLIP ViT/L14
[12], following related work [1, 14].

We then perform multiple stages s ∈ [2, .., ns] of upscaling, consisting of applying a pre-trained
super-resolution model SR and then Blended Diffusion with SDEdit [9]. As SR, we use "realesrgan-
x4plus" [19] followed by bilinear downscaling. As the RealESRGAN model was trained to upscale
natural images with natural distortions, artifacts caused by the diffusion model in the previous stage
usually are present in the output of SR. Therefore, we then use Blended Diffusion to improve the
visual fidelity and ensure consistency of the generation with the prompt. As input x̃ for Blended
Diffusion, we use the output of SR, but replace the unmasked region with a low-pass filtered version
of the input image: x̃ = m ⊙ SR(xs−1) + (1 −m) ⊙ LP(xin), where LP is a low-pass filter and
xs−1 is the output of the previous stage. We discuss the reason for the filtering in more detail in
Section A.4. We implement the low-pass filter LP by bilinearly downsampling the input image xin

to the input resolution of the current stage and then upsampling it to the target resolution. After each
stage, we perform decoder optimization to improve the blending with the original image.
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While we could, barring memory constraints, apply the diffusion model to arbitrarily large resolutions,
in practice even a generous graphics memory of 32GB limits us to at most 960x960 pixel when
using Stable Diffusion. Therefore, for higher resolutions we split the input into multiple overlapping
segments and apply the upscaling and Blended Diffusion to them separately. We then combine the
upscaled segments by alpha-compositing [11] the overlapping regions. Finally, as we also can not
perform decoder optimization at high resolutions directly, we again split the image into multiple
segments and optimize the loss LDO across all segments. Using the optimized weights, we then
decode each input segment and again use alpha compositing to combine them.

Hyperparameters In our experiments, we use one intermediate stage with the longer edge of the
output being 768 pixels long, followed by the final full resolution which is processed in segments.
The segments are each 768x768 pixels large overlapping with each neighbor by 128 pixels. To speed
up inference, we use DDIM [18] as sampler with T = 50 steps. In the first stage we generate a batch
of size B = 5 as input for the clip reranking. In the intermediate stages we start the denoising from
T ′ = 0.4T and in the final, segmented stage we start from T ′ = 0.25T . We run decoder optimization
for 100 steps, using Adam [7] with learning rate 1× 10−4, as suggested in [1]. We use R = 5 repaint
steps in the first stage and don’t use Repaint in the following stages.

A.3 Baseline Comparisons

To validate our approach, we compare it to two baselines: 1) Using Blended Diffusion with Stable
Diffusion v1.4 naively by running the first stage at the highest resolution we can fit in VRAM,
960x960 pixels in our case, and then upscaling the edited images bilinearly. 2) Using Dall-E 2 [13]
via their Web-UI, we can inpaint the masked region at high resolutions. However, as Dall-E 2 is
limited to 1024x1024 pixels, we have to inpaint in multiple segments separately. The results are
shown in Figure 4. We find that directly applying Blended Diffusion to a resolution significantly
higher than the model was trained on leads to repeated elements, such as the two mountains or two
paintings in our examples. Similarly, while producing a high-fidelity image, applying Dall-E 2 in
segments also produced repeated elements (statues, paintings). Our multi-stage approach allows us to
obtain a globally consistent result.

A.4 Ablations

Upscaling To upscale the image or image segments after the first stage, we upscale the low-
resolution input with Real-ESRGAN and then use text-guided Blended Diffusion with a low-pass
filtered background image. To validate our design decisions, we compare a) only bilinear upscaling,
b) only ESRGAN upscaling, c) ESRGAN + unconditional diffusion, d) ESRGAN + text-conditional
diffusion, e) ESRGAN + text-conditional Blended Diffusion with an unfiltered background image
f) ESRGAN + text-conditional Blended Diffusion with a low-pass filtered background image. We
show the results for the different ablations in Figure 5, showing that using our proposed method
significantly improves blending with the background and the visual fidelity of the results.

We also note that if we do not low-pass filter the background, Blended Diffusion tends to produce
more blurred outputs. We hypothesize that this is due to the difference in "sharpness" between the
high-resolution background image and the upscaled output of the previous stage. This difference then
seems to be amplified in the denoising process, leading to a more blurry edited region. We stress that
this is an empirical observation and more work is needed to properly understand this phenomenon.

Repaint As we use Repaint [8] in the first stage of our approach, we provide an ablation of the
effect of different repaint steps R on the final result. We do not use clip-reranking in this experiment
in order to isolate the effect of Repaint. The results are shown in Figure 6. While not using repaint
often leads to poor blending of the edited area, such as in the corgi, painting, and hair examples,
using a too high number of repainting steps can also lead to poor results (hair, corgi). Unlike the
other samples, the river scene was generated by Stable Diffusion and editing it with Stable Diffusion
seems to work well even without repaint. In practice we find that setting the number of repaint steps
to R = 5 works well in most cases, however, a practitioner may want to adjust this parameter on a
case-by-case basis to obtain the best possible results.
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Figure 4: Comparison of our approach to two baselines. Left: we directly apply Blended Diffusion
to the highest resolution we can fit into the VRAM (960x960 pixels) and then bilinearly upscale
the output. Middle: We use the Dall-E 2 web UI to edit the image at its full resolution. Due to
the edited region being larger than the 1024x1024 generation window, we have to apply Dall-E
to multiple independent segments. Right: Our proposed approach. We find that directly applying
Blended Diffusion leads to repeated elements (two heads, two mountains, two pictures) and fails
to produce fine details (hair). Dall-E 2 produces visually high-fidelity images, but fails to produce
globally coherent images (floating statues, four paintings). Our method produces globally consistent
images while providing a similar visual fidelity. Note that the full images are downscaled. The
zoomed-in regions measure 512x512 pixels and are shown at full resolution.
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Figure 5: Ablation of different upscaling methods, applied after the Blended Diffusion in the first
stage with fixed seeds. a) Bilinear upscaling, b) ESRGAN, c) ESRGAN + unconditional diffusion,
d) ESRGAN + text-conditional diffusion, e) ESRGAN + text-conditional Blended Diffusion, f)
ESRGAN + text-conditional Blended Diffusion with a low-pass filtered background. Note that the
images are downscaled from the full resolution.
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Figure 6: Comparison of different repaint steps R without clip reranking. Without repaint, the edited
region often does not blend well with the background, while too many repaint steps can also cause
unrealistic images (corgi, hair). We generally find R = 5 to work best. Note that the images are
downscaled from the full resolution.

Random Seeds To show the variation of our approach to random seeds we show results for different
inputs for 8 different seeds each in Figure 7. The quality of the results does vary between seeds, but
for a practitioner it should be easy to run the model multiple times and pick the most appropriate
output.

A.5 Related Work

Multi-stage approaches have been previously proposed for image generation [4, 15]. Cascaded
Diffusion [6] trains one model to generate images at a low resolution and then two super-resolution
networks which are conditioned on the low-resolution input through channel-wise concatenation. A
similar architecture is also utilized in Imagen [17] and DALL-E 2 [13]. Unlike these methods we use
the same model in all stages and do not explicitly condition on the low-resolution image, allowing us
to use any pre-trained text-conditional model. Additionally, these methods are in practice still limited
to 1024x1024 pixels by computational constraints. Wu et al. [20] present an approach that is able to
generate arbitrarily high-resolution images and perform high-resolution outpainting by learning a
representation of the nearby context, allowing global consistency. However, their work is focused on
out-painting or image generation and they do not investigate text-guided editing. Glide [10] presents
an approach to generate and edit images using a text-conditional diffusion model. Similar to [2], their
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Figure 7: Outputs of our model for different random seeds. Note that the images are downscaled
from the full resolution.
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approach is limited to the resolution that their diffusion model was trained on, and can not be easily
extended to higher resolutions.

B Limitations

Our current approach still has limitations, in three main ways: Firstly, we reuse pretrained diffusion
models and are therefore limited to editing images that they perform well at generating. For example,
we found stable diffusion to perform poorly on night-scenes and in general it seems to not perform as
well on photographs as it does on artwork. Secondly, the blending between the unedited region and
edited region is often still visible upon close inspection. Decoder optimization works well to improve
the blending, but once we reach resolutions around 1000x2000 or above the optimization starts to
take a significant amount of time (10 minutes on a V100 for 3000x2000 pixels). Using a pixel-space
diffusion model instead would remove the need for decoder optimization. Thirdly, our approach uses
Real-ESRGAN to upscale the images. While this works well in most cases, in some cases fine details
are removed, leading to poor blending with the original image.

C Images used

All images used in our paper are used in accordance with their licenses and attributed below, in the
order of Figure 7:

1. "Portrait of Clarissa Strozzi", by Titian Vecelli, via https://commons.wikimedia.org/
wiki/File:Clarissa_Strozzi,_por_Tiziano.jpg (1803x2117)

2. "people walking on sidewalk near high rise buildings during daytime", by Nat Weearwong,
via https://unsplash.com/photos/0cZgvYHirBg (4896x3264)

3. "The River Severn at Shrewsbury, Shropshire", by Paul Sandby, via https://https:
//unsplash.com/photos/HEEvYhNzpEo (3999x3041)

4. Selfie by author (3456x4608)
5. "white wooden dresser with mirror photo", by Minh Pham, via https://unsplash.com/

photos/7pCFUybP_P8 (3902x5853)
6. "Lofi Cyberpunk" by David Revoy https://www.davidrevoy.com/article867/

lofi-cyberpunk (2431x1930), CC BY 4.0 https://creativecommons.org/
licenses/by/4.0/

7. Anime-style image of river generated with stable diffusion by the authors (2048x2048)
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