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Abstract

Similar to colorization in computer vision, instrument separation is to assign
instrument labels (e.g. piano, guitar...) to notes from unlabeled mixtures which
contain only performance information. To address the problem, we adopt diffusion
models and explicitly guide them to preserve consistency between mixtures and
music. The quantitative results show that our proposed model can generate high-
fidelity samples for multitrack symbolic music with creativity.

1 Introduction

With the recent progress of music technology, a musician can play multiple instruments simultaneously
by dividing pitches of a electronic keyboard into several zones to deploy each instrument. This
feature is known as zoning, however, it has limitations for the solo ensemble because of limited and
overlapped pitch ranges for each instrument. To support musicians during their solo performance,
Dong et al. [1]] have introduced instrument separation or Mixture2Music to assign the instruments
dynamically to notes in the ensemble. As colorization in computer vision, it is placed on an ill-posed
problem since multiple instruments can be labeled on single note.

The solution for the above problem requires probabilistic models or additional constraints appropriate
for music. First, the development of diffusion models has shown promising results for generation
tasks, including music generation [2], only assuming the type of noise processes with the Markov
property. This design can enable to deal with Mixture2Music effectively without any differentiable
tricks for binary pianoroll since it has few architectural assumptions [3, 4]. Second, one of the
constraints from Mixture2Music is on how to maintain strong consistency between mixtures and
generated music. It means that the task should satisfy the condition that all notes in any generated
music belong to one of the components in a mixture. Although recent diffusion models suggest the
ways of guiding directions conditioned on labels [} 6], it just only guarantees weak constraints.

In this paper, we utilize diffusion models to address the instrument separation and impose a consistency
constraint on them. For feasibility experiments, mixtures that are solo performance generated virtually
from the multitrack music. Our results are evaluated for creativity as well as consistency.

2 Method

In this section, we introduce the preparation process of our dataset, the special point of the instrument
separation model, and its evaluation protocol.
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Figure 1: The denoiser for instrument separation.

2.1 Data preparation

For symbolic music generation, Lakh MIDI Dataset [7]] is the most prevalent because it contains
176,581 MIDI with various genres and tracks. We take only 4/4 time signature MIDIs which consist
of more than one instrument that we defined. The tracks in each MIDI can be composed of the
combinations of piano, guitar, bass, string, and drum. To convert the MIDIs to pianoroll representation,
we adopt 16th note quantization with binary representation. By a sliding window with a stride of 1
bar, we obtained 3,106,506 music phrases each of which can be denoted as yTXP xC e {0, 1} where
T indicates the number of time steps in a bar (1" = 64), P for the number of pitches (P = 72), and
C for the number of instruments (C' = 5).

From the acquired music phrases, mixtures 27> € {0,1} can be generated by summing and
clipping y along C' dimension. Then, our instrument separation task is defined to recover y from x.

2.2 Separator based on diffusion model

Our separator is built on DDPM settings [8] with forward and reverse processes of Gaussian transfor-
mation. Unlike [2], we diffuse the pianoroll y directly without any pre-trained models. The simplified
training objective from DDPM, which predicts noise at time step t, is also adopted with linear noise
scheduling for 1,000 time steps. To fulfill model generalization and large capacity, TransUNet [9]]
which adopts optimal fusion of convolutions and attentions is used as a denoiser and modified to
admit time step embeddings through adaptive group normalization layers (Figure 1).

When training the model, a mixture is conditioned by being multiplied to both the inputs and targets
of the denoiser. This is an effective strategy because zero indicators in the mixture prevent generated
music from activating notes for all instruments. It enables to preserve strong consistency between
mixtures and music. At the inference phase, the reverse process starting from isotropic Gaussian noise
is conducted, maintaining mixture multiplications for all time steps. To obtain sigmoid probability
of each note at the last time step, we train another simple decoder that denoises noisy samples from
t=1tot=0.

3 Evaluation

We suggest two metrics; 1) consistency that measures how similar mixtures (z) obtained from
generated samples are to their original mixtures (x), 2) diversity that measures the average of distance
between generated samples (y/) and their original music (y). All distances are computed by the
average of element-wise Hamming distance.

We compare three models based on TransUNet with similar scale; 1) VAE with mixture mask at the
end of layers, 2) DDPM, and 3) DDIM [10]. Compared to VAE (Table 1), the diffusion models tend
to generate more consistent and diverse samples for instrument separation. Our results also indicate
that the number of diffusion time steps is sufficient since the DDPM is comparable to the DDIM.

Table 1: The evaluation table. Best values are marked in bold font.

Model  Consistency () Diversity (1)

VAE 4.500e-3 8.625e-3
DDPM  8.974e-5 1.107-2
DDIM  2.469e-4 1.138e-2




4 Ethical Implications

Generated contents from our proposed model are not new but rearranged versions of the existing
music. Original creator of Lakh MIDI Dataset can claim his copyright.
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A Visualization for DDIM Results

We introduce three examples of instrument separation; the case of 1) recovering like its original music,
2) missing some tracks, and 3) over-generating new tracks. For each figure, the upper one indicates
a generated sample from a mixture and the bottom one indicates the original music of the mixture.
From left to right, each distinct color area denotes the instrument set (piano, guitar, bass, string, and
drum). You can listen more samples at https://github.com/sjhan91/Mixture2Music_Official.
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B Implementation Details

You can refer to the structure of our denoiser derived from TransUNet in Table 2. The down-
block contains max-pooling and residual convolution layers, and the up-block does interpolation,
concatenation of encoded features, and residual convolutions. In the bottleneck of the denoiser, there
are 2 Transformer layers each of which has 256 hidden units with 4 attention heads. Their positional
encodings are learned in a relative manner.

Table 2: Our TransUNet structure. The input and output shape are (T = 64, P = 72, C' = 5).

Model Operations  Output Shape
Input Layer (64,72, 64)

Down (32, 36, 128)

Encoder Down (16, 18, 256)
Down (8,9, 256)

Transformer (8,9, 256)

Up (16, 18, 128)

Up (32, 36, 64)

Decoder Up (64. 72, 64)

Output Layer (64,72,5)

Time embeddings are expanded through sinusoidal positional embeddings (16 dims) and conditioned
on adaptive group normalization in the convolution layers. Our model is trained on 50 epochs with
AdamW optimizer, reducing learning rates (starting from le-3) by a factor of 0.9 when the validation
error does not increase.

For the VAE baseline implementation, bottleneck features of the TransUNet (after Transformer layers)
are reparameterized to be sampled from Gaussian distribution. It means that the VAE has larger
parameters than the diffusion models because of the layers responsible for mean and variance vectors.
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